Объявление : Все некоммерческие проекты, зарегистрированные для использования Earth Engine до
15 апреля 2025 года, должны
подтвердить право на некоммерческое использование для сохранения доступа. Если вы не подтвердите право до 26 сентября 2025 года, ваш доступ может быть приостановлен.
Отправить отзыв
ee.ImageCollection.qualityMosaic
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Объединяет все изображения в коллекцию, используя диапазон качества в качестве функции упорядочивания по пикселям.
Использование Возврат ImageCollection. qualityMosaic (qualityBand)
Изображение
Аргумент Тип Подробности это: collection
Коллекция изображений Коллекция мозаики. qualityBand
Нить Название качественной группы в коллекции.
Примеры Редактор кода (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' );
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col . map ( function ( img ) {
var cldProb = img . select ( 'MSK_CLDPRB' );
var cldProbInv = cldProb . multiply ( - 1 ). rename ( 'quality' );
return img . addBands ( cldProbInv );
});
// Image visualization settings.
var visParams = {
bands : [ 'B4' , 'B3' , 'B2' ],
min : 0 ,
max : 4500
};
Map . setCenter ( - 103.19 , 40.14 , 9 );
Map . addLayer ( col , visParams , 'Collection (for series inspection)' , false );
// Generate a best-pixel mosaic from the image collection.
var img = col . qualityMosaic ( 'quality' );
Map . addLayer ( img , visParams , 'Best-pixel mosaic (by cloud score)' );
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col . qualityMosaic ( 'MSK_CLDPRB' );
Map . addLayer ( img , visParams , 'Worst-pixel mosaic (by cloud score)' , false ); Настройка Python
Информацию об API Python и использовании geemap
для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' )
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand ( img ):
cldProb = img . select ( 'MSK_CLDPRB' )
cldProbInv = cldProb . multiply ( - 1 ) . rename ( 'quality' )
return img . addBands ( cldProbInv )
col = col . map ( invertCloudProbabilityBand )
# Image visualization settings.
vis_params = { 'bands' : [ 'B4' , 'B3' , 'B2' ], 'min' : 0 , 'max' : 4500 }
m = geemap . Map ()
m . set_center ( - 103.19 , 40.14 , 9 )
m . add_layer ( col , vis_params , 'Collection (for series inspection)' , False )
# Generate a best-pixel mosaic from the image collection.
img = col . qualityMosaic ( 'quality' )
m . add_layer ( img , vis_params , 'Best-pixel mosaic (by cloud score)' )
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col . qualityMosaic ( 'MSK_CLDPRB' )
m . add_layer ( img , vis_params , 'Worst-pixel mosaic (by cloud score)' , False )
m ,Объединяет все изображения в коллекцию, используя диапазон качества в качестве функции упорядочивания по пикселям.
Использование Возврат ImageCollection. qualityMosaic (qualityBand)
Изображение
Аргумент Тип Подробности это: collection
Коллекция изображений Коллекция мозаики. qualityBand
Нить Название качественной группы в коллекции.
Примеры Редактор кода (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' );
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col . map ( function ( img ) {
var cldProb = img . select ( 'MSK_CLDPRB' );
var cldProbInv = cldProb . multiply ( - 1 ). rename ( 'quality' );
return img . addBands ( cldProbInv );
});
// Image visualization settings.
var visParams = {
bands : [ 'B4' , 'B3' , 'B2' ],
min : 0 ,
max : 4500
};
Map . setCenter ( - 103.19 , 40.14 , 9 );
Map . addLayer ( col , visParams , 'Collection (for series inspection)' , false );
// Generate a best-pixel mosaic from the image collection.
var img = col . qualityMosaic ( 'quality' );
Map . addLayer ( img , visParams , 'Best-pixel mosaic (by cloud score)' );
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col . qualityMosaic ( 'MSK_CLDPRB' );
Map . addLayer ( img , visParams , 'Worst-pixel mosaic (by cloud score)' , false ); Настройка Python
Информацию об API Python и использовании geemap
для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' )
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand ( img ):
cldProb = img . select ( 'MSK_CLDPRB' )
cldProbInv = cldProb . multiply ( - 1 ) . rename ( 'quality' )
return img . addBands ( cldProbInv )
col = col . map ( invertCloudProbabilityBand )
# Image visualization settings.
vis_params = { 'bands' : [ 'B4' , 'B3' , 'B2' ], 'min' : 0 , 'max' : 4500 }
m = geemap . Map ()
m . set_center ( - 103.19 , 40.14 , 9 )
m . add_layer ( col , vis_params , 'Collection (for series inspection)' , False )
# Generate a best-pixel mosaic from the image collection.
img = col . qualityMosaic ( 'quality' )
m . add_layer ( img , vis_params , 'Best-pixel mosaic (by cloud score)' )
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col . qualityMosaic ( 'MSK_CLDPRB' )
m . add_layer ( img , vis_params , 'Worst-pixel mosaic (by cloud score)' , False )
m
Отправить отзыв
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0" , а примеры кода – по лицензии Apache 2.0 . Подробнее об этом написано в правилах сайта . Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-24 UTC.
Хотите рассказать подробнее?
[[["Прост для понимания","easyToUnderstand","thumb-up"],["Помог мне решить мою проблему","solvedMyProblem","thumb-up"],["Другое","otherUp","thumb-up"]],[["Отсутствует нужная мне информация","missingTheInformationINeed","thumb-down"],["Слишком сложен/слишком много шагов","tooComplicatedTooManySteps","thumb-down"],["Устарел","outOfDate","thumb-down"],["Проблема с переводом текста","translationIssue","thumb-down"],["Проблемы образцов/кода","samplesCodeIssue","thumb-down"],["Другое","otherDown","thumb-down"]],["Последнее обновление: 2025-07-24 UTC."],[],[]]