Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
The geometry used as the left operand of the operation.
right
Geometry
The geometry used as the right operand of the operation.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere.
spherical
Boolean, default: false
If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-06-23 UTC."],[[["\u003cp\u003e\u003ccode\u003edistance()\u003c/code\u003e calculates the minimum distance between a MultiPolygon and another geometry.\u003c/p\u003e\n"],["\u003cp\u003eThe function returns the distance as a float, potentially in meters on the sphere depending on the projection used.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters include \u003ccode\u003emaxError\u003c/code\u003e for reprojection tolerance and \u003ccode\u003eproj\u003c/code\u003e to specify the projection for the calculation.\u003c/p\u003e\n"],["\u003cp\u003eThe distance is computed from the boundary of the MultiPolygon to the nearest point on the other geometry.\u003c/p\u003e\n"]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional arguments: `maxError` (tolerated error during reprojection), `proj` (projection for the operation), and `spherical` (whether to use a spherical or elliptical model). The method returns a float representing the distance. Examples in JavaScript and Python demonstrate calculating the distance between a MultiPolygon and a Point, and how to display the result in a map.\n"],null,["# ee.Geometry.MultiPolygon.distance\n\nReturns the minimum distance between two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------|---------|\n| MultiPolygon.distance`(right, `*maxError* `, `*proj* `, `*spherical*`)` | Float |\n\n| Argument | Type | Details |\n|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n| `spherical` | Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a MultiPolygon object.\nvar multiPolygon = ee.Geometry.MultiPolygon(\n [[[[-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423]]],\n [[[-122.081, 37.417],\n [-122.086, 37.421],\n [-122.089, 37.416]]]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.Point(-122.090, 37.423);\n\n// Apply the distance method to the MultiPolygon object.\nvar multiPolygonDistance = multiPolygon.distance({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('multiPolygon.distance(...) =', multiPolygonDistance);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(multiPolygon,\n {'color': 'black'},\n 'Geometry [black]: multiPolygon');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a MultiPolygon object.\nmultipolygon = ee.Geometry.MultiPolygon([\n [[\n [-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423],\n ]],\n [[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],\n])\n\n# Define other inputs.\ninput_geom = ee.Geometry.Point(-122.090, 37.423)\n\n# Apply the distance method to the MultiPolygon object.\nmultipolygon_distance = multipolygon.distance(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('multipolygon.distance(...) =', multipolygon_distance)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(\n multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'\n)\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm\n```"]]