Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
The geometry used as the left operand of the operation.
right
Geometry
The geometry used as the right operand of the operation.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere.
spherical
Boolean, default: false
If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-06-23 UTC."],[[["\u003cp\u003e\u003ccode\u003edistance()\u003c/code\u003e calculates the minimum distance between two geometries, with one being a LinearRing.\u003c/p\u003e\n"],["\u003cp\u003eThe distance is returned as a float and can be calculated using a specified projection or spherically in meters.\u003c/p\u003e\n"],["\u003cp\u003eOptional parameters allow for controlling the error margin (\u003ccode\u003emaxError\u003c/code\u003e) and the projection (\u003ccode\u003eproj\u003c/code\u003e) used in the calculation.\u003c/p\u003e\n"],["\u003cp\u003eThis function is accessible within both the JavaScript and Python Earth Engine APIs.\u003c/p\u003e\n"]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional parameters: `maxError` (tolerated error), `proj` (projection for calculation), and `spherical` (true for unit sphere calculation, false for elliptical). The function outputs a float representing the distance. The examples show how to use the function in JavaScript and Python to compute and visualize the distance between a `LinearRing` and a `Point` geometry.\n"],null,["# ee.Geometry.LinearRing.distance\n\nReturns the minimum distance between two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-----------------------------------------------------------------------|---------|\n| LinearRing.distance`(right, `*maxError* `, `*proj* `, `*spherical*`)` | Float |\n\n| Argument | Type | Details |\n|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n| `spherical` | Boolean, default: false | If true, the calculation will be done on the unit sphere. If false, the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.Point(-122.090, 37.423);\n\n// Apply the distance method to the LinearRing object.\nvar linearRingDistance = linearRing.distance({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.distance(...) =', linearRingDistance);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Define other inputs.\ninput_geom = ee.Geometry.Point(-122.090, 37.423)\n\n# Apply the distance method to the LinearRing object.\nlinearring_distance = linearring.distance(right=input_geom, maxError=1)\n\n# Print the result.\ndisplay('linearring.distance(...) =', linearring_distance)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm\n```"]]