AI-generated Key Takeaways
-
The
Geometry.length()
method returns the length of the linear parts of a geometry, ignoring polygonal parts. -
The length of multi-geometries is calculated as the sum of the lengths of their components.
-
The result is a floating-point number representing the length.
-
Optional arguments include
maxError
for reprojection error tolerance andproj
to specify the output coordinate system units.
Usage | Returns |
---|---|
Geometry.length(maxError, proj) | Float |
Argument | Type | Details |
---|---|---|
this: geometry | Geometry | The input geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | If specified, the result will be in the units of the coordinate system of this projection. Otherwise it will be in meters. |
Examples
Code Editor (JavaScript)
// Define a Geometry object. var geometry = ee.Geometry({ 'type': 'Polygon', 'coordinates': [[[-122.081, 37.417], [-122.086, 37.421], [-122.084, 37.418], [-122.089, 37.416]]] }); // Apply the length method to the Geometry object. var geometryLength = geometry.length(); // Print the result to the console. print('geometry.length(...) =', geometryLength); // Display relevant geometries on the map. Map.setCenter(-122.085, 37.422, 15); Map.addLayer(geometry, {'color': 'black'}, 'Geometry [black]: geometry');
import ee import geemap.core as geemap
Colab (Python)
# Define a Geometry object. geometry = ee.Geometry({ 'type': 'Polygon', 'coordinates': [[ [-122.081, 37.417], [-122.086, 37.421], [-122.084, 37.418], [-122.089, 37.416], ]], }) # Apply the length method to the Geometry object. geometry_length = geometry.length() # Print the result. display('geometry.length(...) =', geometry_length) # Display relevant geometries on the map. m = geemap.Map() m.set_center(-122.085, 37.422, 15) m.add_layer(geometry, {'color': 'black'}, 'Geometry [black]: geometry') m