Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
Stay organized with collections
Save and categorize content based on your preferences.
Returns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.
Usage
Returns
LinearRing.centroid(maxError, proj)
Geometry
Argument
Type
Details
this: geometry
Geometry
Calculates the centroid of this geometry.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
If specified, the result will be in this projection. Otherwise it will be in EPSG:4326.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-05 UTC."],[[["\u003cp\u003e\u003ccode\u003ecentroid()\u003c/code\u003e returns a point at the center of the highest-dimension components of a geometry, ignoring lower dimensions.\u003c/p\u003e\n"],["\u003cp\u003eIt is applicable to \u003ccode\u003eLinearRing\u003c/code\u003e geometries and accepts optional \u003ccode\u003emaxError\u003c/code\u003e and \u003ccode\u003eproj\u003c/code\u003e parameters.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003emaxError\u003c/code\u003e controls the reprojection error tolerance, while \u003ccode\u003eproj\u003c/code\u003e specifies the output projection (defaults to EPSG:4326).\u003c/p\u003e\n"],["\u003cp\u003eThe function effectively calculates the geometric center of the input geometry.\u003c/p\u003e\n"]]],["The `centroid()` method calculates the center point of a geometry's highest-dimension components, disregarding lower-dimensional parts. It accepts `maxError` to control reprojection tolerance and `proj` to specify the output projection, defaulting to EPSG:4326. It applies to geometry such as a `LinearRing` and outputs the center point as a `Geometry` object. Examples show its use in Javascript and Python, creating a centroid and visually displaying it with its source geometry.\n"],null,["# ee.Geometry.LinearRing.centroid\n\nReturns a point at the center of the highest-dimension components of the geometry. Lower-dimensional components are ignored, so the centroid of a geometry containing two polygons, three lines and a point is equivalent to the centroid of a geometry containing just the two polygons.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|------------------------------------------------|----------|\n| LinearRing.centroid`(`*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-----------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | Calculates the centroid of this geometry. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | If specified, the result will be in this projection. Otherwise it will be in EPSG:4326. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Apply the centroid method to the LinearRing object.\nvar linearRingCentroid = linearRing.centroid({'maxError': 1});\n\n// Print the result to the console.\nprint('linearRing.centroid(...) =', linearRingCentroid);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(linearRingCentroid,\n {'color': 'red'},\n 'Result [red]: linearRing.centroid');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Apply the centroid method to the LinearRing object.\nlinearring_centroid = linearring.centroid(maxError=1)\n\n# Print the result.\ndisplay('linearring.centroid(...) =', linearring_centroid)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(\n linearring_centroid, {'color': 'red'}, 'Result [red]: linearring.centroid'\n)\nm\n```"]]