Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
Stay organized with collections
Save and categorize content based on your preferences.
Returns the intersection of the two geometries.
Usage
Returns
MultiPolygon.intersection(right, maxError, proj)
Geometry
Argument
Type
Details
this: left
Geometry
The geometry used as the left operand of the operation.
right
Geometry
The geometry used as the right operand of the operation.
maxError
ErrorMargin, default: null
The maximum amount of error tolerated when performing any necessary reprojection.
proj
Projection, default: null
The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[[["\u003cp\u003e\u003ccode\u003eintersection\u003c/code\u003e returns a Geometry representing the shared area between a MultiPolygon and another Geometry.\u003c/p\u003e\n"],["\u003cp\u003eIt takes the \u003ccode\u003eright\u003c/code\u003e Geometry, optional \u003ccode\u003emaxError\u003c/code\u003e, and optional \u003ccode\u003eproj\u003c/code\u003e as arguments.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003emaxError\u003c/code\u003e parameter controls the tolerance for reprojection errors.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eproj\u003c/code\u003e parameter specifies the projection for the operation, defaulting to spherical coordinates if unspecified.\u003c/p\u003e\n"]]],["The `intersection` method computes the overlapping area between two geometries, returning a new geometry representing their intersection. It takes a `right` geometry as the second operand, and optionally `maxError` and `proj` parameters for error tolerance and projection. The operation can be performed in a spherical coordinate system or using a specified projection. Examples in Javascript and python are provided showing how to define geometries, call the `intersection` method, and display the results.\n"],null,["Returns the intersection of the two geometries.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------|----------|\n| MultiPolygon.intersection`(right, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|--------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `left` | Geometry | The geometry used as the left operand of the operation. |\n| `right` | Geometry | The geometry used as the right operand of the operation. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |\n| `proj` | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |\n\nExamples\n\nCode Editor (JavaScript) \n\n```javascript\n// Define a MultiPolygon object.\nvar multiPolygon = ee.Geometry.MultiPolygon(\n [[[[-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423]]],\n [[[-122.081, 37.417],\n [-122.086, 37.421],\n [-122.089, 37.416]]]]);\n\n// Define other inputs.\nvar inputGeom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425);\n\n// Apply the intersection method to the MultiPolygon object.\nvar multiPolygonIntersection = multiPolygon.intersection({'right': inputGeom, 'maxError': 1});\n\n// Print the result to the console.\nprint('multiPolygon.intersection(...) =', multiPolygonIntersection);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(multiPolygon,\n {'color': 'black'},\n 'Geometry [black]: multiPolygon');\nMap.addLayer(inputGeom,\n {'color': 'blue'},\n 'Parameter [blue]: inputGeom');\nMap.addLayer(multiPolygonIntersection,\n {'color': 'red'},\n 'Result [red]: multiPolygon.intersection');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\nColab (Python) \n\n```python\n# Define a MultiPolygon object.\nmultipolygon = ee.Geometry.MultiPolygon([\n [[\n [-122.092, 37.424],\n [-122.086, 37.418],\n [-122.079, 37.425],\n [-122.085, 37.423],\n ]],\n [[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],\n])\n\n# Define other inputs.\ninput_geom = ee.Geometry.BBox(-122.085, 37.415, -122.075, 37.425)\n\n# Apply the intersection method to the MultiPolygon object.\nmultipolygon_intersection = multipolygon.intersection(\n right=input_geom, maxError=1\n)\n\n# Print the result.\ndisplay('multipolygon.intersection(...) =', multipolygon_intersection)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(\n multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'\n)\nm.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')\nm.add_layer(\n multipolygon_intersection,\n {'color': 'red'},\n 'Result [red]: multipolygon.intersection',\n)\nm\n```"]]