Announcement: All noncommercial projects registered to use Earth Engine before April 15, 2025 must verify noncommercial eligibility to maintain Earth Engine access.
Stay organized with collections
Save and categorize content based on your preferences.
Returns 1 if and only if the first value is greater than the second for each matched pair of bands in image1 and image2. If either image1 or image2 has only 1 band, then it is used against all the bands in the other image. If the images have the same number of bands, but not the same names, they're used pairwise in the natural order. The output bands are named for the longer of the two inputs, or if they're equal in length, in image1's order. The type of the output pixels is boolean.
Usage
Returns
Image.gt(image2)
Image
Argument
Type
Details
this: image1
Image
The image from which the left operand bands are taken.
image2
Image
The image from which the right operand bands are taken.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-12-06 UTC."],[[["\u003cp\u003eThe \u003ccode\u003egt()\u003c/code\u003e function compares corresponding bands of two images, returning 1 if the first image's band value is greater than the second image's band value, and 0 otherwise.\u003c/p\u003e\n"],["\u003cp\u003eIf the images have different numbers of bands, single-band images are compared against all bands of the multi-band image; if they have the same number of bands but different names, bands are compared in their natural order.\u003c/p\u003e\n"],["\u003cp\u003eThe output is a boolean image with bands named according to the longer input image or, if equal in length, the first image's band names.\u003c/p\u003e\n"],["\u003cp\u003eThis function is useful for creating binary masks based on thresholding, such as identifying areas above sea level in an elevation dataset.\u003c/p\u003e\n"]]],["The function compares corresponding bands between two images (`image1` and `image2`). It returns 1 (true) if `image1`'s band value is greater than `image2`'s; otherwise, it returns 0 (false). If one image has a single band, it's compared against all bands of the other image. If the images have the same amount of bands with differing names, bands are compared sequentially. The output, representing these comparisons, is an image with boolean pixel values, named according to the longer input image's band names, or `image1`'s if they have the same length.\n"],null,["Returns 1 if and only if the first value is greater than the second for each matched pair of bands in image1 and image2. If either image1 or image2 has only 1 band, then it is used against all the bands in the other image. If the images have the same number of bands, but not the same names, they're used pairwise in the natural order. The output bands are named for the longer of the two inputs, or if they're equal in length, in image1's order. The type of the output pixels is boolean.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------|---------|\n| Image.gt`(image2)` | Image |\n\n| Argument | Type | Details |\n|----------------|-------|---------------------------------------------------------|\n| this: `image1` | Image | The image from which the left operand bands are taken. |\n| `image2` | Image | The image from which the right operand bands are taken. |\n\nExamples\n\nCode Editor (JavaScript) \n\n```javascript\n// Show world oceans in blue and anything higher than the ellipsoid as gray.\n// The bedrock layer is generally close to the geoid (sealevel).\nvar elevation = ee.Image('NOAA/NGDC/ETOPO1').select('bedrock');\nvar waterLand = elevation.gt(0.0);\nvar waterLandViz = {palette: ['cadetblue', 'lightgray']};\nMap.addLayer(waterLand, waterLandViz, 'water_land');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\nColab (Python) \n\n```python\n# Show world oceans in blue and anything higher than the ellipsoid as gray.\n# The bedrock layer is generally close to the geoid (sealevel).\nelevation = ee.Image('NOAA/NGDC/ETOPO1').select('bedrock')\nwater_land = elevation.gt(0.0)\nwater_land_viz = {'palette': ['cadetblue', 'lightgray']}\nm = geemap.Map()\nm.add_layer(water_land, water_land_viz, 'water_land')\nm\n```"]]