ee.Geometry.LinearRing.buffer

  • The buffer method returns a new geometry representing the input buffered by a specified distance, expanding the geometry for positive distances and contracting it for negative distances.

  • The buffer method can be applied to a LinearRing geometry and takes parameters for distance, maximum error tolerance, and projection.

  • The distance parameter, which can be positive or negative, determines the size of the buffer and is interpreted in meters by default unless a projection is specified.

  • The maxError and proj parameters are optional, allowing for control over approximation tolerance and the coordinate system used for buffering.

Returns the input buffered by a given distance. If the distance is positive, the geometry is expanded, and if the distance is negative, the geometry is contracted.

UsageReturns
LinearRing.buffer(distance, maxError, proj)Geometry
ArgumentTypeDetails
this: geometryGeometryThe geometry being buffered.
distanceFloatThe distance of the buffering, which may be negative. If no projection is specified, the unit is meters. Otherwise the unit is in the coordinate system of the projection.
maxErrorErrorMargin, default: nullThe maximum amount of error tolerated when approximating the buffering circle and performing any necessary reprojection. If unspecified, defaults to 1% of the distance.
projProjection, default: nullIf specified, the buffering will be performed in this projection and the distance will be interpreted as units of the coordinate system of this projection. Otherwise the distance is interpereted as meters and the buffering is performed in a spherical coordinate system.

Examples

Code Editor (JavaScript)

// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
    [[-122.091, 37.420],
     [-122.085, 37.422],
     [-122.080, 37.430]]);

// Apply the buffer method to the LinearRing object.
var linearRingBuffer = linearRing.buffer({'distance': 100});

// Print the result to the console.
print('linearRing.buffer(...) =', linearRingBuffer);

// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
             {'color': 'black'},
             'Geometry [black]: linearRing');
Map.addLayer(linearRingBuffer,
             {'color': 'red'},
             'Result [red]: linearRing.buffer');

Python setup

See the Python Environment page for information on the Python API and using geemap for interactive development.

import ee
import geemap.core as geemap

Colab (Python)

# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
    [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)

# Apply the buffer method to the LinearRing object.
linearring_buffer = linearring.buffer(distance=100)

# Print the result.
display('linearring.buffer(...) =', linearring_buffer)

# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(
    linearring_buffer, {'color': 'red'}, 'Result [red]: linearring.buffer'
)
m