AI-generated Key Takeaways
-
ee.Kernel.diamond
generates a diamond-shaped boolean kernel. -
The
radius
argument specifies the size of the kernel, and theunits
argument can be set to "pixels" or "meters". -
The kernel values can be normalized to sum to 1 using the
normalize
argument and scaled by a factor using themagnitude
argument. -
Examples in both JavaScript and Python demonstrate how to use the
ee.Kernel.diamond
function and show the resulting kernel matrix.
Usage | Returns |
---|---|
ee.Kernel.diamond(radius, units, normalize, magnitude) | Kernel |
Argument | Type | Details |
---|---|---|
radius | Float | The radius of the kernel to generate. |
units | String, default: "pixels" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |
normalize | Boolean, default: true | Normalize the kernel values to sum to 1. |
magnitude | Float, default: 1 | Scale each value by this amount. |
Examples
Code Editor (JavaScript)
print('A diamond kernel', ee.Kernel.diamond({radius: 3})); /** * Output weights matrix (up to 1/100 precision for brevity) * * [0.00, 0.00, 0.00, 0.04, 0.00, 0.00, 0.00] * [0.00, 0.00, 0.04, 0.04, 0.04, 0.00, 0.00] * [0.00, 0.04, 0.04, 0.04, 0.04, 0.04, 0.00] * [0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04] * [0.00, 0.04, 0.04, 0.04, 0.04, 0.04, 0.00] * [0.00, 0.00, 0.04, 0.04, 0.04, 0.00, 0.00] * [0.00, 0.00, 0.00, 0.04, 0.00, 0.00, 0.00] */
import ee import geemap.core as geemap
Colab (Python)
from pprint import pprint print('A diamond kernel:') pprint(ee.Kernel.diamond(**{'radius': 3}).getInfo()) # Output weights matrix (up to 1/100 precision for brevity) # [0.00, 0.00, 0.00, 0.04, 0.00, 0.00, 0.00] # [0.00, 0.00, 0.04, 0.04, 0.04, 0.00, 0.00] # [0.00, 0.04, 0.04, 0.04, 0.04, 0.04, 0.00] # [0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04] # [0.00, 0.04, 0.04, 0.04, 0.04, 0.04, 0.00] # [0.00, 0.00, 0.04, 0.04, 0.04, 0.00, 0.00] # [0.00, 0.00, 0.00, 0.04, 0.00, 0.00, 0.00]