AI-generated Key Takeaways
-
erfcInv()
calculates the inverse complementary error function of an input array, element-by-element. -
The function accepts an array as input and returns an array of the same size with the calculated values.
-
It's used for statistical computations, particularly in areas like probability and signal processing where the error function is relevant.
-
The
erfcInv()
function provides the inverse mapping of the complementary error function, allowing you to find the input value corresponding to a given probability.
Usage | Returns |
---|---|
Array.erfcInv() | Array |
Argument | Type | Details |
---|---|---|
this: input | Array | The input array. |
Examples
Code Editor (JavaScript)
print(ee.Array([0.1]).erfcInv()); // [1.163] print(ee.Array([1]).erfcInv()); // [0] print(ee.Array([1.9]).erfcInv()); // [-1.163] var start = 0.001; var end = 1.999; var points = ee.Array(ee.List.sequence(start, end, null, 50)); var values = points.erfcInv(); // Plot erfcInv() defined above. var chart = ui.Chart.array.values(values, 0, points) .setOptions({ viewWindow: {min: start, max: end}, hAxis: { title: 'x', viewWindowMode: 'maximized', ticks: [ {v: 0}, {v: 1}, {v: 2}] }, vAxis: { title: 'erfcInv(x)', ticks: [ {v: -3}, {v: 0}, {v: 3}] }, lineWidth: 1, pointSize: 0, }); print(chart);
import ee import geemap.core as geemap
Colab (Python)
import altair as alt import pandas as pd display(ee.Array([0.1]).erfcInv()) # [1.163] display(ee.Array([1]).erfcInv()) # [0] display(ee.Array([1.9]).erfcInv()) # [-1.163] start = 0.001 end = 1.999 points = ee.Array(ee.List.sequence(start, end, None, 50)) values = points.erfcInv() df = pd.DataFrame({'x': points.getInfo(), 'erfcInv(x)': values.getInfo()}) # Plot erfcInv() defined above. alt.Chart(df).mark_line().encode( x=alt.X('x', axis=alt.Axis(values=[0, 1, 2])), y=alt.Y('erfcInv(x)', axis=alt.Axis(values=[-3, 0, 3])) )