Stay organized with collections Save and categorize content based on your preferences.
Creates an empty Support Vector Machine classifier.

ee.Classifier.libsvm(decisionProcedure, svmType, kernelType, shrinking, degree, gamma, coef0, cost, nu, terminationEpsilon, lossEpsilon, oneClass)Classifier
decisionProcedureString, default: "Voting"The decision procedure to use for classification. Either 'Voting' or 'Margin'. Not used for regression.
svmTypeString, default: "C_SVC"The SVM type. One of `C_SVC`, `NU_SVC`, `ONE_CLASS`, `EPSILON_SVR` or `NU_SVR`.
kernelTypeString, default: "LINEAR"The kernel type. One of LINEAR (u′×v), POLY ((γ×u′×v + coef₀)ᵈᵉᵍʳᵉᵉ), RBF (exp(-γ×|u-v|²)) or SIGMOID (tanh(γ×u′×v + coef₀)).
shrinkingBoolean, default: trueWhether to use shrinking heuristics.
degreeInteger, default: nullThe degree of polynomial. Valid for POLY kernels.
gammaFloat, default: nullThe gamma value in the kernel function. Defaults to the reciprocal of the number of features. Valid for POLY, RBF and SIGMOID kernels.
coef0Float, default: nullThe coef₀ value in the kernel function. Defaults to 0. Valid for POLY and SIGMOID kernels.
costFloat, default: nullThe cost (C) parameter. Defaults to 1. Only valid for C-SVC, epsilon-SVR, and nu-SVR.
nuFloat, default: nullThe nu parameter. Defaults to 0.5. Only valid for nu-SVC, one-class SVM, and nu-SVR.
terminationEpsilonFloat, default: nullThe termination criterion tolerance (e). Defaults to 0.001. Only valid for epsilon-SVR.
lossEpsilonFloat, default: nullThe epsilon in the loss function (p). Defaults to 0.1. Only valid for epsilon-SVR.
oneClassInteger, default: nullThe class of the training data on which to train in a one-class SVM. Defaults to 0. Only valid for one-class SVM. Possible values are 0 and 1. The classifier output is binary (0/1) and will match this class value for the data determined to be in the class.


Code Editor (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')

// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');

// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();

// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
  numPoints: 100,
  classBand: label,
  region: roi,
  scale: 10,
  geometries: true

// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');

// Train an SVM classifier (C-SVM classification, voting decision procedure,
// linear kernel) from the training sample.
var trainedClassifier = ee.Classifier.libsvm().train({
  features: trainingSample,
  classProperty: label,
  inputProperties: img.bandNames()

// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());

// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());

// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());

// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);

// Add the layers to the map.
var classVis = {
  min: 0,
  max: 10,
  palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
            'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);