AI-generated Key Takeaways
-
The
ee.Kernel.squarefunction generates a square-shaped boolean kernel. -
The function takes arguments for
radius,units,normalize, andmagnitudeto customize the kernel. -
The
radiusargument determines the size of the square kernel. -
The
unitsargument specifies whether the radius is in pixels or meters. -
The
normalizeandmagnitudearguments control the normalization and scaling of the kernel values.
| Usage | Returns |
|---|---|
ee.Kernel.square(radius, units, normalize, magnitude) | Kernel |
| Argument | Type | Details |
|---|---|---|
radius | Float | The radius of the kernel to generate. |
units | String, default: "pixels" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |
normalize | Boolean, default: true | Normalize the kernel values to sum to 1. |
magnitude | Float, default: 1 | Scale each value by this amount. |
Examples
Code Editor (JavaScript)
print('A square kernel', ee.Kernel.square({radius: 3})); /** * Output weights matrix (up to 1/100 precision for brevity) * * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] * [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] */
import ee import geemap.core as geemap
Colab (Python)
from pprint import pprint print('A square kernel:') pprint(ee.Kernel.square(**{'radius': 3}).getInfo()) # Output weights matrix (up to 1/100 precision for brevity) # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02] # [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02]