Объявление : Все некоммерческие проекты, зарегистрированные для использования Earth Engine до
15 апреля 2025 года, должны
подтвердить право на некоммерческое использование для сохранения доступа. Если вы не подтвердите право до 26 сентября 2025 года, ваш доступ может быть приостановлен.
Отправить отзыв
ee.ImageCollection.aggregate_first
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Агрегирует по заданному свойству объектов в коллекции, вычисляя значение свойства первого объекта в коллекции.
Использование Возврат ImageCollection. aggregate_first (property)
Аргумент Тип Подробности это: collection
FeatureCollection Коллекция для объединения. property
Нить Свойство, которое следует использовать для каждого элемента коллекции.
Примеры Редактор кода (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" )
. filterBounds ( ee . Geometry . Point ([ - 122.073 , 37.188 ]))
. filterDate ( '2018' , '2019' );
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER' ;
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values' , col . aggregate_array ( prop ));
print ( 'Count of property values' , col . aggregate_count ( prop ));
print ( 'Count of distinct property values' , col . aggregate_count_distinct ( prop ));
print ( 'First collection element property value' , col . aggregate_first ( prop ));
print ( 'Histogram of property values' , col . aggregate_histogram ( prop ));
print ( 'Min of property values' , col . aggregate_min ( prop ));
print ( 'Max of property values' , col . aggregate_max ( prop ));
// The following methods are applicable to numerical properties only.
print ( 'Mean of property values' , col . aggregate_mean ( prop ));
print ( 'Sum of property values' , col . aggregate_sum ( prop ));
print ( 'Product of property values' , col . aggregate_product ( prop ));
print ( 'Std dev (sample) of property values' , col . aggregate_sample_sd ( prop ));
print ( 'Variance (sample) of property values' , col . aggregate_sample_var ( prop ));
print ( 'Std dev (total) of property values' , col . aggregate_total_sd ( prop ));
print ( 'Variance (total) of property values' , col . aggregate_total_var ( prop ));
print ( 'Summary stats of property values' , col . aggregate_stats ( prop ));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID' ;
print ( 'List of property values (string)' , col . aggregate_array ( propString ));
print ( 'Min of property values (string)' , col . aggregate_min ( propString ));
print ( 'Max of property values (string)' , col . aggregate_max ( propString )); Настройка Python
Информацию об API Python и использовании geemap
для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" ) . filterBounds (
ee . Geometry . Point ([ - 122.073 , 37.188 ])) . filterDate ( '2018' , '2019' )
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values:' , col . aggregate_array ( prop ) . getInfo ())
print ( 'Count of property values:' , col . aggregate_count ( prop ) . getInfo ())
print ( 'Count of distinct property values:' ,
col . aggregate_count_distinct ( prop ) . getInfo ())
print ( 'First collection element property value:' ,
col . aggregate_first ( prop ) . getInfo ())
print ( 'Histogram of property values:' )
pprint ( col . aggregate_histogram ( prop ) . getInfo ())
print ( 'Min of property values:' , col . aggregate_min ( prop ) . getInfo ())
print ( 'Max of property values:' , col . aggregate_max ( prop ) . getInfo ())
# The following methods are applicable to numerical properties only.
print ( 'Mean of property values:' , col . aggregate_mean ( prop ) . getInfo ())
print ( 'Sum of property values:' , col . aggregate_sum ( prop ) . getInfo ())
print ( 'Product of property values:' , col . aggregate_product ( prop ) . getInfo ())
print ( 'Std dev (sample) of property values:' ,
col . aggregate_sample_sd ( prop ) . getInfo ())
print ( 'Variance (sample) of property values:' ,
col . aggregate_sample_var ( prop ) . getInfo ())
print ( 'Std dev (total) of property values:' ,
col . aggregate_total_sd ( prop ) . getInfo ())
print ( 'Variance (total) of property values:' ,
col . aggregate_total_var ( prop ) . getInfo ())
print ( 'Summary stats of property values' )
pprint ( col . aggregate_stats ( prop ) . getInfo ())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print ( 'List of property values (string):' ,
col . aggregate_array ( prop_string ) . getInfo ())
print ( 'Min of property values (string):' ,
col . aggregate_min ( prop_string ) . getInfo ())
print ( 'Max of property values (string):' ,
col . aggregate_max ( prop_string ) . getInfo ())
Отправить отзыв
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0" , а примеры кода – по лицензии Apache 2.0 . Подробнее об этом написано в правилах сайта . Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-24 UTC.
Хотите рассказать подробнее?
[[["Прост для понимания","easyToUnderstand","thumb-up"],["Помог мне решить мою проблему","solvedMyProblem","thumb-up"],["Другое","otherUp","thumb-up"]],[["Отсутствует нужная мне информация","missingTheInformationINeed","thumb-down"],["Слишком сложен/слишком много шагов","tooComplicatedTooManySteps","thumb-down"],["Устарел","outOfDate","thumb-down"],["Проблема с переводом текста","translationIssue","thumb-down"],["Проблемы образцов/кода","samplesCodeIssue","thumb-down"],["Другое","otherDown","thumb-down"]],["Последнее обновление: 2025-07-24 UTC."],[],["The content details the use of `aggregate_*` functions on an `ImageCollection`. These functions fetch information about a selected property across all images. Specific actions include retrieving a list of property values, counts, statistics, and histograms. `aggregate_first` retrieves the property value of the collection's first object. Other functions calculate minimum, maximum, mean, sum, product, standard deviation, and variance of numerical properties. String properties min and max values are ordered alphanumerically.\n"]]