公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
ee.Image.arrayAccum
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
通过将结果数组像素的每个元素设置为相应像素中沿指定轴的元素(包括轴上的当前位置)的缩减值,沿指定轴累积每个数组像素的元素。可用于生成累计和、单调递增序列等。
用法 | 返回 |
---|
Image.arrayAccum(axis, reducer) | 图片 |
参数 | 类型 | 详细信息 |
---|
此:input | 图片 | 输入图片。 |
axis | 整数 | 执行累计总和运算的轴。 |
reducer | 缩减器,默认值:null | 用于累积值的 reducer。默认值为 SUM,用于生成每个向量沿指定轴的累计和。 |
示例
代码编辑器 (JavaScript)
// A function to print the array for a selected pixel in the following examples.
function sampArrImg(arrImg) {
var point = ee.Geometry.Point([-121, 42]);
return arrImg.sample(point, 500).first().get('array');
}
// Create a 1D array image.
var arrayImg1D = ee.Image([1, 2, 3]).toArray();
print('1D array image (pixel)', sampArrImg(arrayImg1D));
// [1, 2, 3]
// Perform accumulation procedures along axes using ee.Reducer functions.
// Here we calculate the cumulative sum along the 0-axis for a 1D array.
var accumSum1DAx0 = arrayImg1D.arrayAccum(0, ee.Reducer.sum());
print('Cumulative sum along 0-axis', sampArrImg(accumSum1DAx0));
// [1, 3, 6]
// Create a 2D 3x3 array image.
var arrayImg2D = ee.Image([1, 2, 3, 4, 5, 6, 7, 8, 9]).toArray()
.arrayReshape(ee.Image([3, 3]).toArray(), 2);
print('2D 3x3 array image (pixel)', sampArrImg(arrayImg2D));
// [[1, 2, 3],
// [4, 5, 6],
// [7, 8, 9]]
// Calculate the cumulative sum along the 0-axis for a 2D array.
var accumSum2DAx0 = arrayImg2D.arrayAccum(0, ee.Reducer.sum());
print('Cumulative sum along 0-axis', sampArrImg(accumSum2DAx0));
// [[ 1, 2, 3],
// [ 5, 7, 9],
// [12, 15, 18]]
// Calculate the cumulative sum along the 1-axis for a 2D array.
var accumSum2DAx1 = arrayImg2D.arrayAccum(1, ee.Reducer.sum());
print('Cumulative sum along 1-axis', sampArrImg(accumSum2DAx1));
// [[1, 3, 6],
// [4, 9, 15],
// [7, 15, 24]]
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# A function to print the array for a selected pixel in the following examples.
def samp_arr_img(arr_img):
point = ee.Geometry.Point([-121, 42])
return arr_img.sample(point, 500).first().get('array')
# Create a 1D array image.
array_img_1d = ee.Image([1, 2, 3]).toArray()
print('1D array image (pixel):', samp_arr_img(array_img_1d).getInfo())
# [1, 2, 3]
# Perform accumulation procedures along axes using ee.Reducer functions.
# Here we calculate the cumulative sum along the 0-axis for a 1D array.
accum_sum_1d_ax0 = array_img_1d.arrayAccum(0, ee.Reducer.sum())
print('Cumulative sum along 0-axis:', samp_arr_img(accum_sum_1d_ax0).getInfo())
# [1, 3, 6]
# Create a 2D 3x3 array image.
array_img_2d = ee.Image([1, 2, 3, 4, 5, 6, 7, 8, 9]).toArray().arrayReshape(
ee.Image([3, 3]).toArray(),
2)
print('2D 3x3 array image (pixel):', samp_arr_img(array_img_2d).getInfo())
# [[1, 2, 3],
# [4, 5, 6],
# [7, 8, 9]]
# Calculate the cumulative sum along the 0-axis for a 2D array.
accum_sum_2d_ax0 = array_img_2d.arrayAccum(0, ee.Reducer.sum())
print('Cumulative sum along 0-axis:', samp_arr_img(accum_sum_2d_ax0).getInfo())
# [[ 1, 2, 3],
# [ 5, 7, 9],
# [12, 15, 18]]
# Calculate the cumulative sum along the 1-axis for a 2D array.
accum_sum_2d_ax1 = array_img_2d.arrayAccum(1, ee.Reducer.sum())
print('Cumulative sum along 1-axis:', samp_arr_img(accum_sum_2d_ax1).getInfo())
# [[1, 3, 6],
# [4, 9, 15],
# [7, 15, 24]]
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-26。"],[],[]]