[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-07-26 (世界標準時間)。"],[[["\u003cp\u003eGenerates a kernel to weight pixels based on their straight-line distance from the center.\u003c/p\u003e\n"],["\u003cp\u003eKernel values represent the Euclidean distance from the center pixel, optionally normalized and scaled.\u003c/p\u003e\n"],["\u003cp\u003eThe radius of the kernel and units of measurement (pixels or meters) are configurable.\u003c/p\u003e\n"],["\u003cp\u003eWhen specified in meters, the kernel automatically resizes with zoom level changes.\u003c/p\u003e\n"]]],["The `ee.Kernel.euclidean` function generates a distance kernel based on Euclidean distance, returning a Kernel object. Key parameters include `radius`, determining the kernel's size; `units` (\"pixels\" or \"meters\"), dictating the measurement system; `normalize` (default: false), setting whether values sum to 1; and `magnitude` (default: 1), scaling values. An example kernel with a radius of 3 is demonstrated, illustrating the output weight matrix.\n"],null,["# ee.Kernel.euclidean\n\nGenerates a distance kernel based on Euclidean (straight-line) distance.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.euclidean(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Euclidean distance kernel:')\npprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n```"]]