ee.Kernel.euclidean

สร้างเคอร์เนลระยะทางตามระยะทางแบบยุคลิด (เส้นตรง)

การใช้งานการคืนสินค้า
ee.Kernel.euclidean(radius, units, normalize, magnitude)เคอร์เนล
อาร์กิวเมนต์ประเภทรายละเอียด
radiusทศนิยมรัศมีของเคอร์เนลที่จะสร้าง
unitsสตริง ค่าเริ่มต้น: "พิกเซล"ระบบการวัดสำหรับเคอร์เนล ("พิกเซล" หรือ "เมตร") หากระบุเคอร์เนลเป็นเมตร ระบบจะปรับขนาดเมื่อเปลี่ยนระดับการซูม
normalizeบูลีน ค่าเริ่มต้น: falseทำให้ค่าเคอร์เนลอยู่ในค่าปกติที่ผลรวม 1
magnitudeFloat, ค่าเริ่มต้น: 1ปรับขนาดแต่ละค่าตามจำนวนนี้

ตัวอย่าง

โปรแกรมแก้ไขโค้ด (JavaScript)

print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));

/**
 * Output weights matrix (up to 1/1000 precision for brevity)
 *
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 */

การตั้งค่า Python

ดูข้อมูลเกี่ยวกับ Python API และการใช้ geemap เพื่อการพัฒนาแบบอินเทอร์แอกทีฟได้ที่หน้า สภาพแวดล้อม Python

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())

#  Output weights matrix (up to 1/1000 precision for brevity)

#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]