Ankündigung: Alle nicht kommerziellen Projekte, die vor dem 15. April 2025 für die Nutzung der Earth Engine registriert wurden, müssen die Berechtigung zur nicht kommerziellen Nutzung bestätigen, um weiterhin auf die Earth Engine zugreifen zu können.
Das Messsystem für den Kernel („Pixel“ oder „Meter“). Wenn der Kernel in Metern angegeben ist, wird seine Größe bei einer Änderung des Zoomfaktors angepasst.
normalize
Boolescher Wert, Standard: „false“
Normalisieren Sie die Kernelwerte so, dass sie sich auf 1 summieren.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Benötigte Informationen nicht gefunden","missingTheInformationINeed","thumb-down"],["Zu umständlich/zu viele Schritte","tooComplicatedTooManySteps","thumb-down"],["Nicht mehr aktuell","outOfDate","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Problem mit Beispielen/Code","samplesCodeIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003eGenerates a distance kernel based on the Chebyshev distance, which calculates the greatest distance along any dimension between two pixels.\u003c/p\u003e\n"],["\u003cp\u003eThe kernel can be customized using parameters such as radius, units (pixels or meters), normalization, and magnitude scaling.\u003c/p\u003e\n"],["\u003cp\u003eWhen applied, the kernel assigns weights to neighboring pixels based on their Chebyshev distance from the central pixel, creating a matrix of weights.\u003c/p\u003e\n"],["\u003cp\u003eThe resulting weights matrix can be used in various image processing operations, such as smoothing or neighborhood analysis.\u003c/p\u003e\n"]]],["A Chebyshev distance kernel is generated using `ee.Kernel.chebyshev()` with a specified `radius`. The measurement system can be set to 'pixels' or 'meters' via the `units` argument. The kernel values can be normalized to sum to 1 using `normalize`, and scaled with `magnitude`. The output is a kernel representing the Chebyshev distance, where the greatest distance along any dimension defines the value, and it is presented as a matrix.\n"],null,["# ee.Kernel.chebyshev\n\nGenerates a distance kernel based on Chebyshev distance (greatest distance along any dimension).\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.chebyshev(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Chebyshev distance kernel', ee.Kernel.chebyshev({radius: 3}));\n\n/**\n * Output weights matrix\n *\n * [3, 3, 3, 3, 3, 3, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 2, 1, 1, 1, 2, 3]\n * [3, 2, 1, 0, 1, 2, 3]\n * [3, 2, 1, 1, 1, 2, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 3, 3, 3, 3, 3, 3]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Chebyshev distance kernel:')\npprint(ee.Kernel.chebyshev(**{'radius': 3}).getInfo())\n\n# Output weights matrix\n# [3, 3, 3, 3, 3, 3, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 2, 1, 1, 1, 2, 3]\n# [3, 2, 1, 0, 1, 2, 3]\n# [3, 2, 1, 1, 1, 2, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 3, 3, 3, 3, 3, 3]\n```"]]