公告 :凡是在 
2025 年 4 月 15 日前 註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格 ,才能繼續存取。如未在 2025 年 9 月 26 日前完成驗證,存取權可能會暫停。
  
        
 
       
     
  
  
  
    
  
  
  
    
  
  
    
    提供意見
  
   
 
  
    
      ee.ImageCollection.mosaic
    
    
      
      
      透過集合功能整理內容
     
    
      
      你可以依據偏好儲存及分類內容。
     
   
     
  
  
  
   
  
  
    
    
    
  
  
使用遮罩合成集合中的所有圖片。
用量 傳回 ImageCollection. mosaic ()圖片 
引數 類型 詳細資料 這個:collection ImageCollection 要製作馬賽克的集合。 
  
  
  範例 
  
    
  
  
    
    
  
  
  
  
    
    
    
      程式碼編輯器 (JavaScript) 
// Sentinel-2 image collection for July 2021 intersecting a point of interest. 
// Reflectance, cloud probability, and scene classification bands are selected. 
var   col   =   ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
   . filterDate ( '2021-07-01' ,   '2021-08-01' ) 
   . filterBounds ( ee . Geometry . Point ( - 122.373 ,   37.448 )) 
   . select ( 'B.*|MSK_CLDPRB|SCL' ); 
// Visualization parameters for reflectance RGB. 
var   visRefl   =   { 
   bands :   [ 'B11' ,   'B8' ,   'B3' ], 
   min :   0 , 
   max :   4000 
}; 
Map . setCenter ( - 122.373 ,   37.448 ,   9 ); 
Map . addLayer ( col ,   visRefl ,   'Collection reference' ,   false ); 
// Reduce the collection to a single image using a variety of methods. 
var   mean   =   col . mean (); 
Map . addLayer ( mean ,   visRefl ,   'Mean (B11, B8, B3)' ); 
var   median   =   col . median (); 
Map . addLayer ( median ,   visRefl ,   'Median (B11, B8, B3)' ); 
var   min   =   col . min (); 
Map . addLayer ( min ,   visRefl ,   'Min (B11, B8, B3)' ); 
var   max   =   col . max (); 
Map . addLayer ( max ,   visRefl ,   'Max (B11, B8, B3)' ); 
var   sum   =   col . sum (); 
Map . addLayer ( sum , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   500 },   'Sum (MSK_CLDPRB)' ); 
var   product   =   col . product (); 
Map . addLayer ( product , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   1e10 },   'Product (MSK_CLDPRB)' ); 
// ee.ImageCollection.mode returns the most common value. If multiple mode 
// values occur, the minimum mode value is returned. 
var   mode   =   col . mode (); 
Map . addLayer ( mode ,   { bands :   [ 'SCL' ],   min :   1 ,   max :   11 },   'Mode (pixel class)' ); 
// ee.ImageCollection.count returns the frequency of valid observations. Here, 
// image pixels are masked based on cloud probability to add valid observation 
// variability to the collection. Note that pixels with no valid observations 
// are masked out of the returned image. 
var   notCloudCol   =   col . map ( function ( img )   { 
   return   img . updateMask ( img . select ( 'MSK_CLDPRB' ). lte ( 10 )); 
}); 
var   count   =   notCloudCol . count (); 
Map . addLayer ( count ,   { min :   1 ,   max :   5 },   'Count (not cloud observations)' ); 
// ee.ImageCollection.mosaic composites images according to their position in 
// the collection (priority is last to first) and pixel mask status, where 
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
// pixels. 
var   mosaic   =   notCloudCol . mosaic (); 
Map . addLayer ( mosaic ,   visRefl ,   'Mosaic (B11, B8, B3)' );  
    
  
  
    
  
  
  
  
    
  
    
  Python 設定
  請參閱 
    Python 環境 頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。
  
import   ee 
import   geemap.core   as   geemap  
  
    
    
      Colab (Python) 
# Sentinel-2 image collection for July 2021 intersecting a point of interest. 
# Reflectance, cloud probability, and scene classification bands are selected. 
col  =  ( 
    ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
    . filterDate ( '2021-07-01' ,  '2021-08-01' ) 
    . filterBounds ( ee . Geometry . Point ( - 122.373 ,  37.448 )) 
    . select ( 'B.*|MSK_CLDPRB|SCL' ) 
) 
# Visualization parameters for reflectance RGB. 
vis_refl  =  { 'bands' :  [ 'B11' ,  'B8' ,  'B3' ],  'min' :  0 ,  'max' :  4000 } 
m  =  geemap . Map () 
m . set_center ( - 122.373 ,  37.448 ,  9 ) 
m . add_layer ( col ,  vis_refl ,  'Collection reference' ,  False ) 
# Reduce the collection to a single image using a variety of methods. 
mean  =  col . mean () 
m . add_layer ( mean ,  vis_refl ,  'Mean (B11, B8, B3)' ) 
median  =  col . median () 
m . add_layer ( median ,  vis_refl ,  'Median (B11, B8, B3)' ) 
min  =  col . min () 
m . add_layer ( min ,  vis_refl ,  'Min (B11, B8, B3)' ) 
max  =  col . max () 
m . add_layer ( max ,  vis_refl ,  'Max (B11, B8, B3)' ) 
sum  =  col . sum () 
m . add_layer ( 
    sum ,  { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  500 },  'Sum (MSK_CLDPRB)' 
) 
product  =  col . product () 
m . add_layer ( 
    product , 
    { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  1e10 }, 
    'Product (MSK_CLDPRB)' , 
) 
# ee.ImageCollection.mode returns the most common value. If multiple mode 
# values occur, the minimum mode value is returned. 
mode  =  col . mode () 
m . add_layer ( 
    mode ,  { 'bands' :  [ 'SCL' ],  'min' :  1 ,  'max' :  11 },  'Mode (pixel class)' 
) 
# ee.ImageCollection.count returns the frequency of valid observations. Here, 
# image pixels are masked based on cloud probability to add valid observation 
# variability to the collection. Note that pixels with no valid observations 
# are masked out of the returned image. 
not_cloud_col  =  col . map ( 
    lambda  img :  img . updateMask ( img . select ( 'MSK_CLDPRB' ) . lte ( 10 )) 
) 
count  =  not_cloud_col . count () 
m . add_layer ( count ,  { 'min' :  1 ,  'max' :  5 },  'Count (not cloud observations)' ) 
# ee.ImageCollection.mosaic composites images according to their position in 
# the collection (priority is last to first) and pixel mask status, where 
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
# pixels. 
mosaic  =  not_cloud_col . mosaic () 
m . add_layer ( mosaic ,  vis_refl ,  'Mosaic (B11, B8, B3)' ) 
m  
   
  
  
  
       
    
    
      
    
     
  
       
         
  
  
    
    提供意見
  
   
 
       
    
    
      
 
  除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權 ,程式碼範例則為阿帕契 2.0 授權 。詳情請參閱《Google Developers 網站政策 》。Java 是 Oracle 和/或其關聯企業的註冊商標。
  上次更新時間:2025-07-26 (世界標準時間)。
 
 
  
  
    
    
    
      
  
  
    想進一步說明嗎?
  
   
 
     
  
  
    
      [[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-07-26 (世界標準時間)。"],[],["The `mosaic()` function composites images within an `ImageCollection` into a single `Image`.  It prioritizes the order of images from last to first in the collection. The pixel mask status also plays a role, invalid pixels (mask value 0) are filled by valid pixels (mask value \u003e 0) from preceding images. This function can be used in both JavaScript and Python. Several other reduction functions are exemplified.\n"]]