公告 :所有在
2025 年 4 月 15 日 之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件 ,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
发送反馈
ee.Filter.lessThanOrEquals
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
创建一元或二元过滤器,除非左操作数大于右操作数,否则会通过。
用法 返回 ee.Filter.lessThanOrEquals(leftField , rightValue , rightField , leftValue )
过滤
参数 类型 详细信息 leftField
字符串,默认值:null 左操作数的选择器。如果指定了 leftValue,则不应指定此参数。 rightValue
对象,默认值:null 右操作数的值。如果指定了 rightField,则不应指定此字段。 rightField
字符串,默认值:null 用于选择右操作数的选择器。如果指定了 rightValue,则不应指定此参数。 leftValue
对象,默认值:null 左操作数的值。如果指定了 leftField,则不应指定此字段。
示例
代码编辑器 (JavaScript)
// Field site vegetation characteristics from projects in western USA.
var fc = ee . FeatureCollection ( 'BLM/AIM/v1/TerrADat/TerrestrialAIM' )
. filter ( 'ProjectName == "Colorado NWDO Kremmling FO 2016"' );
// Display field plots on the map.
Map . setCenter ( - 107.792 , 39.871 , 7 );
Map . addLayer ( fc );
// Compare the per-feature values of two properties and filter the collection
// based on the results of various relational expressions. The two properties
// to compare are invasive and non-invasive annual forb cover at each plot.
var leftProperty = 'InvAnnForbCover_AH' ;
var rightProperty = 'NonInvAnnForbCover_AH' ;
print ( 'Plots where invasive forb cover is…' );
print ( '…EQUAL to non-invasive cover' ,
fc . filter ( ee . Filter . equals (
{ leftField : leftProperty , rightField : rightProperty })));
print ( '…NOT EQUAL to non-invasive cover' ,
fc . filter ( ee . Filter . notEquals (
{ leftField : leftProperty , rightField : rightProperty })));
print ( '…LESS THAN non-invasive cover' ,
fc . filter ( ee . Filter . lessThan (
{ leftField : leftProperty , rightField : rightProperty })));
print ( '…LESS THAN OR EQUAL to non-invasive cover' ,
fc . filter ( ee . Filter . lessThanOrEquals (
{ leftField : leftProperty , rightField : rightProperty })));
print ( '…GREATER THAN non-invasive cover' ,
fc . filter ( ee . Filter . greaterThan (
{ leftField : leftProperty , rightField : rightProperty })));
print ( '…GREATER THAN OR EQUAL to non-invasive cover' ,
fc . filter ( ee . Filter . greaterThanOrEquals (
{ leftField : leftProperty , rightField : rightProperty })));
print ( '…is not greater than 10 percent different than non-invasive cover' ,
fc . filter ( ee . Filter . maxDifference (
{ difference : 10 , leftField : leftProperty , rightField : rightProperty })));
// Instead of comparing values of two feature properties using the leftField
// and rightField parameters, you can compare a property value (leftProperty)
// against a constant value (rightValue).
print ( 'Plots where invasive forb cover is greater than 20%' ,
fc . filter ( ee . Filter . greaterThan (
{ leftField : leftProperty , rightValue : 20 })));
// You can also swap the operands to assign the constant to the left side of
// the relational expression (leftValue) and the feature property on the right
// (rightField). Here, we get the complement of the previous example.
print ( 'Plots where 20% is greater than invasive forb cover.' ,
fc . filter ( ee . Filter . greaterThan (
{ leftValue : 20 , rightField : leftProperty })));
// Binary filters are useful in joins. For example, group all same-site plots
// together using a saveAll join.
var groupingProp = 'SiteID' ;
var sitesFc = fc . distinct ( groupingProp );
var joinFilter = ee . Filter . equals (
{ leftField : groupingProp , rightField : groupingProp });
var groupedPlots = ee . Join . saveAll ( 'site_plots' ). apply ( sitesFc , fc , joinFilter );
print ( 'List of plots in first site' , groupedPlots . first (). get ( 'site_plots' ));
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境 页面。
import ee
import geemap.core as geemap
Colab (Python)
# Field site vegetation characteristics from projects in western USA.
fc = ee . FeatureCollection ( 'BLM/AIM/v1/TerrADat/TerrestrialAIM' ) . filter (
'ProjectName == "Colorado NWDO Kremmling FO 2016"'
)
# Display field plots on the map.
m = geemap . Map ()
m . set_center ( - 107.792 , 39.871 , 7 )
m . add_layer ( fc )
display ( m )
# Compare the per-feature values of two properties and filter the collection
# based on the results of various relational expressions. The two properties
# to compare are invasive and non-invasive annual forb cover at each plot.
left_property = 'InvAnnForbCover_AH'
right_property = 'NonInvAnnForbCover_AH'
display ( 'Plots where invasive forb cover is…' )
display (
'…EQUAL to non-invasive cover' ,
fc . filter (
ee . Filter . equals ( leftField = left_property , rightField = right_property )
),
)
display (
'…NOT EQUAL to non-invasive cover' ,
fc . filter (
ee . Filter . notEquals ( leftField = left_property , rightField = right_property )
),
)
display (
'…LESS THAN non-invasive cover' ,
fc . filter (
ee . Filter . lessThan ( leftField = left_property , rightField = right_property )
),
)
display (
'…LESS THAN OR EQUAL to non-invasive cover' ,
fc . filter (
ee . Filter . lessThanOrEquals (
leftField = left_property , rightField = right_property
)
),
)
display (
'…GREATER THAN non-invasive cover' ,
fc . filter (
ee . Filter . greaterThan (
leftField = left_property , rightField = right_property
)
),
)
display (
'…GREATER THAN OR EQUAL to non-invasive cover' ,
fc . filter (
ee . Filter . greaterThanOrEquals (
leftField = left_property , rightField = right_property
)
),
)
display (
'…is not greater than 10 percent different than non-invasive cover' ,
fc . filter (
ee . Filter . maxDifference (
difference = 10 , leftField = left_property , rightField = right_property
)
),
)
# Instead of comparing values of two feature properties using the leftField
# and rightField parameters, you can compare a property value (left_property)
# against a constant value (rightValue).
display (
'Plots where invasive forb cover is greater than 20%' ,
fc . filter ( ee . Filter . greaterThan ( leftField = left_property , rightValue = 20 )),
)
# You can also swap the operands to assign the constant to the left side of
# the relational expression (leftValue) and the feature property on the right
# (rightField). Here, we get the complement of the previous example.
display (
'Plots where 20 % i s greater than invasive forb cover.' ,
fc . filter ( ee . Filter . greaterThan ( leftValue = 20 , rightField = left_property )),
)
# Binary filters are useful in joins. For example, group all same-site plots
# together using a saveAll join.
grouping_prop = 'SiteID'
sites_fc = fc . distinct ( grouping_prop )
join_filter = ee . Filter . equals (
leftField = grouping_prop , rightField = grouping_prop
)
grouped_plots = ee . Join . saveAll ( 'site_plots' ) . apply ( sites_fc , fc , join_filter )
display ( 'List of plots in first site' , grouped_plots . first () . get ( 'site_plots' ))
发送反馈
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可 获得了许可,并且代码示例已根据 Apache 2.0 许可 获得了许可。有关详情,请参阅 Google 开发者网站政策 。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
需要向我们提供更多信息?
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-26。"],[],["The content describes creating filters using `ee.Filter` for comparing data. This involves using methods like `equals`, `notEquals`, `lessThan`, `lessThanOrEquals`, `greaterThan`, `greaterThanOrEquals`, and `maxDifference` to filter a FeatureCollection based on property comparisons. These comparisons can be between two fields (e.g., `leftField`, `rightField`) or a field and a constant value (e.g., `leftField`, `rightValue`). These filters are used to filter collections and are also used in joins.\n"]]