ee.FeatureCollection.runBigQuery

BigQuery 쿼리를 실행하고 결과를 가져와 FeatureCollection으로 표시합니다.

사용반환 값
ee.FeatureCollection.runBigQuery(query, geometryColumn, maxBytesBilled)FeatureCollection
인수유형세부정보
query문자열BigQuery 리소스에 실행할 GoogleSQL 쿼리입니다.
geometryColumn문자열, 기본값: null기본 지형지물 도형으로 사용할 열의 이름입니다. 지정하지 않으면 첫 번째 도형 열이 사용됩니다.
maxBytesBilled긴, 기본값: 100000000000쿼리를 처리하는 동안 청구된 최대 바이트 수입니다. 이 한도를 초과하는 BigQuery 작업은 실패하며 요금이 청구되지 않습니다.

코드 편집기 (JavaScript)

// Get places from Overture Maps Dataset in BigQuery public data.
Map.setCenter(-3.69, 40.41, 12)
var mapGeometry= ee.Geometry(Map.getBounds(true)).toGeoJSONString();
var sql =
    "SELECT geometry, names.primary as name, categories.primary as category "
 + " FROM bigquery-public-data.overture_maps.place "
 + " WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('" + mapGeometry+ "'))";

var features = ee.FeatureCollection.runBigQuery({
  query: sql,
  geometryColumn: 'geometry'
});

// Display all relevant features on the map.
Map.addLayer(features,
             {'color': 'black'},
             'Places from Overture Maps Dataset');


// Create a histogram of the categories and print it.
var propertyOfInterest = 'category';
var histogram = features.filter(ee.Filter.notNull([propertyOfInterest]))
                        .aggregate_histogram(propertyOfInterest);
print(histogram);

// Create a frequency chart for the histogram.
var categories = histogram.keys().map(function(k) {
  return ee.Feature(null, {
    key: k,
    value: histogram.get(k)
  });
});
var sortedCategories = ee.FeatureCollection(categories).sort('value', false);
print(ui.Chart.feature.byFeature(sortedCategories).setChartType('Table'));

Python 설정

Python API 및 대화형 개발을 위한 geemap 사용에 관한 자세한 내용은 Python 환경 페이지를 참고하세요.

import ee
import geemap.core as geemap

Colab (Python)

import json
import pandas as pd

# Get places from Overture Maps Dataset in BigQuery public data.
location = ee.Geometry.Point(-3.69, 40.41)
map_geometry = json.dumps(location.buffer(5e3).getInfo())

sql = f"""SELECT geometry, names.primary as name, categories.primary as category
FROM bigquery-public-data.overture_maps.place
WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('{map_geometry}'))"""

features = ee.FeatureCollection.runBigQuery(
    query=sql, geometryColumn="geometry"
)

# Display all relevant features on the map.
m = geemap.Map()
m.center_object(location, 13)
m.add_layer(features, {'color': 'black'}, 'Places from Overture Maps Dataset')
display(m)

# Create a histogram of the place categories.
property_of_interest = 'category'
histogram = (
    features.filter(
        ee.Filter.notNull([property_of_interest])
    ).aggregate_histogram(property_of_interest)
).getInfo()

# Display the histogram as a pandas DataFrame.
df = pd.DataFrame(list(histogram.items()), columns=['category', 'frequency'])
df = df.sort_values(by=['frequency'], ascending=False, ignore_index=True)
display(df)