公告 :所有在
2025 年 4 月 15 日 之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件 ,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
发送反馈
ee.FeatureCollection.kriging
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
返回在每个像素处对 Kriging 估计器进行抽样的结果。
用法 返回 FeatureCollection. kriging (propertyName, shape, range, sill, nugget, maxDistance , reducer )
图片
参数 类型 详细信息 此:collection
FeatureCollection 用作估计源数据的特征集合。 propertyName
字符串 要估计的属性(必须为数值)。 shape
字符串 半变异函数形状({exponential, gaussian, spherical} 之一)。 range
浮点数 半变异函数范围,以米为单位。 sill
浮点数 半变异函数值域。 nugget
浮点数 半变异函数块金。 maxDistance
浮点数,默认值:null 半径,用于确定每个像素的计算中包含哪些特征(以米为单位)。默认为半变异函数的范围。 reducer
缩减器,默认值:null 用于将重叠点的“propertyName”值折叠为单个值的缩减器。
示例
代码编辑器 (JavaScript)
/**
* This example generates an interpolated surface using kriging from a
* FeatureCollection of random points that simulates a table of air temperature
* at ocean weather buoys.
*/
// Average air temperature at 2m height for June, 2020.
var img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' )
. select ([ 'mean_2m_air_temperature' ], [ 'tmean' ]);
// Region of interest: South Pacific Ocean.
var roi = ee . Geometry . Polygon (
[[[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ]]], null , false );
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img . sample (
{ region : roi , scale : 25000 , numPixels : 50 , geometries : true }); //250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc . kriging ({
propertyName : 'tmean' ,
shape : 'gaussian' ,
range : 2.8e6 ,
sill : 164 ,
nugget : 0.05 ,
maxDistance : 1.8e6 ,
reducer : ee . Reducer . mean ()
});
// Display the results on the map.
Map . setCenter ( - 137.47 , - 30.47 , 3 );
Map . addLayer ( tmeanImg , { min : 279 , max : 300 }, 'Temperature (K)' );
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境 页面。
import ee
import geemap.core as geemap
Colab (Python)
# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' ) . select (
[ 'mean_2m_air_temperature' ], [ 'tmean' ]
)
# Region of interest: South Pacific Ocean.
roi = ee . Geometry . Polygon (
[[
[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ],
]],
None ,
False ,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img . sample ( region = roi , scale = 25000 , numPixels = 50 , geometries = True )
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc . kriging (
propertyName = 'tmean' ,
shape = 'gaussian' ,
range = 2.8e6 ,
sill = 164 ,
nugget = 0.05 ,
maxDistance = 1.8e6 ,
reducer = ee . Reducer . mean (),
)
# Display the results on the map.
m = geemap . Map ()
m . set_center ( - 137.47 , - 30.47 , 3 )
m . add_layer (
tmean_img ,
{ 'min' : 279 , 'max' : 300 , 'min' : 279 , 'max' : 300 },
'Temperature (K)' ,
)
m
发送反馈
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可 获得了许可,并且代码示例已根据 Apache 2.0 许可 获得了许可。有关详情,请参阅 Google 开发者网站政策 。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
需要向我们提供更多信息?
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-26。"],[],["The `kriging` method interpolates a surface from a `FeatureCollection` by sampling a Kriging estimator at each pixel, returning an `Image`. Key parameters include: `propertyName` (numeric property to estimate), `shape` (semivariogram shape), `range`, `sill`, and `nugget` (semivariogram values). `maxDistance` limits feature inclusion in pixel calculations. An optional `reducer` handles overlapping points. Example demonstrates creating a temperature surface from sampled points, setting Kriging parameters, and visualizing the result.\n"]]