ارسال بازخورد
ee.FeatureCollection.classify
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
هر ویژگی را در یک مجموعه طبقه بندی می کند.
استفاده برمی گرداند FeatureCollection. classify (classifier, outputName )
مجموعه ویژگی ها
استدلال تایپ کنید جزئیات این: features
مجموعه ویژگی ها مجموعه ای از ویژگی ها برای طبقه بندی. هر ویژگی باید شامل تمام ویژگی های طرح طبقه بندی کننده باشد. classifier
طبقه بندی کننده طبقه بندی کننده مورد استفاده outputName
رشته، پیش فرض: "طبقه بندی" نام ویژگی خروجی که باید اضافه شود. اگر طبقه بندی کننده بیش از یک خروجی داشته باشد، این آرگومان نادیده گرفته می شود.
نمونه ها ویرایشگر کد (جاوا اسکریپت)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ). select ( 'SR_B[1-7]' );
var landcover =
ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ). select ( 'landcover' );
var sampleSource = spectral . addBands ( landcover );
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource . sample ({
region : spectral . geometry (), // sample only from within Landsat image extent
scale : 30 ,
numPixels : 2000 ,
geometries : true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
. randomColumn ({ distribution : 'uniform' });
print ( 'Sample for classifier development' , sample );
// Split out ~80% of the sample for training the classifier.
var training = sample . filter ( 'random < 0.8' );
print ( 'Training set' , training );
// Train a random forest classifier.
var classifier = ee . Classifier . smileRandomForest ( 10 ). train ({
features : training ,
classProperty : landcover . bandNames (). get ( 0 ),
inputProperties : spectral . bandNames ()
});
// Classify the sample.
var predictions = sample . classify (
{ classifier : classifier , outputName : 'predicted_landcover' });
print ( 'Predictions' , predictions );
// Split out the validation feature set.
var validation = predictions . filter ( 'random >= 0.8' );
print ( 'Validation set' , validation );
// Get a list of possible class values to use for error matrix axis labels.
var order = sample . aggregate_array ( 'landcover' ). distinct (). sort ();
print ( 'Error matrix axis labels' , order );
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation . errorMatrix ({
actual : landcover . bandNames (). get ( 0 ),
predicted : 'predicted_landcover' ,
order : order
});
print ( 'Error matrix' , errorMatrix );
// Compute accuracy metrics from the error matrix.
print ( "Overall accuracy" , errorMatrix . accuracy ());
print ( "Consumer's accuracy" , errorMatrix . consumersAccuracy ());
print ( "Producer's accuracy" , errorMatrix . producersAccuracy ());
print ( "Kappa" , errorMatrix . kappa ()); راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap کولب (پایتون)
from pprint import pprint
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ) . select (
'SR_B[1-7]' )
landcover = ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ) . select ( 'landcover' )
sample_source = spectral . addBands ( landcover )
# Sample the combined images to generate a FeatureCollection.
sample = sample_source . sample ( ** {
# sample only from within Landsat image extent
'region' : spectral . geometry (),
'scale' : 30 ,
'numPixels' : 2000 ,
'geometries' : True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample . randomColumn ( ** { 'distribution' : 'uniform' })
print ( 'Sample for classifier development:' , sample . getInfo ())
# Split out ~80% of the sample for training the classifier.
training = sample . filter ( 'random < 0.8' )
print ( 'Training set:' , training . getInfo ())
# Train a random forest classifier.
classifier = ee . Classifier . smileRandomForest ( 10 ) . train ( ** {
'features' : training ,
'classProperty' : landcover . bandNames () . get ( 0 ),
'inputProperties' : spectral . bandNames ()
})
# Classify the sample.
predictions = sample . classify (
** { 'classifier' : classifier , 'outputName' : 'predicted_landcover' })
print ( 'Predictions:' , predictions . getInfo ())
# Split out the validation feature set.
validation = predictions . filter ( 'random >= 0.8' )
print ( 'Validation set:' , validation . getInfo ())
# Get a list of possible class values to use for error matrix axis labels.
order = sample . aggregate_array ( 'landcover' ) . distinct () . sort ()
print ( 'Error matrix axis labels:' , order . getInfo ())
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation . errorMatrix ( ** {
'actual' : landcover . bandNames () . get ( 0 ),
'predicted' : 'predicted_landcover' ,
'order' : order
})
print ( 'Error matrix:' )
pprint ( error_matrix . getInfo ())
# Compute accuracy metrics from the error matrix.
print ( 'Overall accuracy:' , error_matrix . accuracy () . getInfo ())
print ( 'Consumer \' s accuracy:' )
pprint ( error_matrix . consumersAccuracy () . getInfo ())
print ( 'Producer \' s accuracy:' )
pprint ( error_matrix . producersAccuracy () . getInfo ())
print ( 'Kappa:' , error_matrix . kappa () . getInfo ())
ارسال بازخورد
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
میخواهید موارد بیشتری را با ما درمیان بگذارید؟
[[["درک آسان","easyToUnderstand","thumb-up"],["مشکلم را برطرف کرد","solvedMyProblem","thumb-up"],["غیره","otherUp","thumb-up"]],[["اطلاعاتی که نیاز دارم وجود ندارد","missingTheInformationINeed","thumb-down"],["بیشازحد پیچیده/ مراحل بسیار زیاد","tooComplicatedTooManySteps","thumb-down"],["قدیمی","outOfDate","thumb-down"],["مشکل ترجمه","translationIssue","thumb-down"],["مشکل کد / نمونهها","samplesCodeIssue","thumb-down"],["غیره","otherDown","thumb-down"]],["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[],[]]