إشعار : يجب
إثبات الأهلية للاستخدام غير التجاري لجميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إليها. إذا لم يتم تأكيد حسابك بحلول 26 سبتمبر 2025، قد يتم تعليق إمكانية الوصول إليه.
إرسال ملاحظات
ee.FeatureCollection.classify
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تصنيف كل ميزة في مجموعة
الاستخدام المرتجعات FeatureCollection. classify (classifier, outputName )
FeatureCollection
الوسيطة النوع التفاصيل هذا: features
FeatureCollection مجموعة الميزات المطلوب تصنيفها يجب أن تحتوي كل ميزة على جميع السمات في مخطّط المصنّف. classifier
المصنِّف تمثّل هذه السمة المصنّف المطلوب استخدامه. outputName
سلسلة، القيمة التلقائية: "classification" اسم سمة الإخراج المطلوب إضافتها. يتم تجاهل هذه الوسيطة إذا كان المصنّف يتضمّن أكثر من ناتج واحد.
أمثلة
محرّر الرموز البرمجية (JavaScript)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ). select ( 'SR_B[1-7]' );
var landcover =
ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ). select ( 'landcover' );
var sampleSource = spectral . addBands ( landcover );
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource . sample ({
region : spectral . geometry (), // sample only from within Landsat image extent
scale : 30 ,
numPixels : 2000 ,
geometries : true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
. randomColumn ({ distribution : 'uniform' });
print ( 'Sample for classifier development' , sample );
// Split out ~80% of the sample for training the classifier.
var training = sample . filter ( 'random < 0.8' );
print ( 'Training set' , training );
// Train a random forest classifier.
var classifier = ee . Classifier . smileRandomForest ( 10 ). train ({
features : training ,
classProperty : landcover . bandNames (). get ( 0 ),
inputProperties : spectral . bandNames ()
});
// Classify the sample.
var predictions = sample . classify (
{ classifier : classifier , outputName : 'predicted_landcover' });
print ( 'Predictions' , predictions );
// Split out the validation feature set.
var validation = predictions . filter ( 'random >= 0.8' );
print ( 'Validation set' , validation );
// Get a list of possible class values to use for error matrix axis labels.
var order = sample . aggregate_array ( 'landcover' ). distinct (). sort ();
print ( 'Error matrix axis labels' , order );
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation . errorMatrix ({
actual : landcover . bandNames (). get ( 0 ),
predicted : 'predicted_landcover' ,
order : order
});
print ( 'Error matrix' , errorMatrix );
// Compute accuracy metrics from the error matrix.
print ( "Overall accuracy" , errorMatrix . accuracy ());
print ( "Consumer's accuracy" , errorMatrix . consumersAccuracy ());
print ( "Producer's accuracy" , errorMatrix . producersAccuracy ());
print ( "Kappa" , errorMatrix . kappa ());
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ) . select (
'SR_B[1-7]' )
landcover = ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ) . select ( 'landcover' )
sample_source = spectral . addBands ( landcover )
# Sample the combined images to generate a FeatureCollection.
sample = sample_source . sample ( ** {
# sample only from within Landsat image extent
'region' : spectral . geometry (),
'scale' : 30 ,
'numPixels' : 2000 ,
'geometries' : True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample . randomColumn ( ** { 'distribution' : 'uniform' })
print ( 'Sample for classifier development:' , sample . getInfo ())
# Split out ~80% of the sample for training the classifier.
training = sample . filter ( 'random < 0.8' )
print ( 'Training set:' , training . getInfo ())
# Train a random forest classifier.
classifier = ee . Classifier . smileRandomForest ( 10 ) . train ( ** {
'features' : training ,
'classProperty' : landcover . bandNames () . get ( 0 ),
'inputProperties' : spectral . bandNames ()
})
# Classify the sample.
predictions = sample . classify (
** { 'classifier' : classifier , 'outputName' : 'predicted_landcover' })
print ( 'Predictions:' , predictions . getInfo ())
# Split out the validation feature set.
validation = predictions . filter ( 'random >= 0.8' )
print ( 'Validation set:' , validation . getInfo ())
# Get a list of possible class values to use for error matrix axis labels.
order = sample . aggregate_array ( 'landcover' ) . distinct () . sort ()
print ( 'Error matrix axis labels:' , order . getInfo ())
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation . errorMatrix ( ** {
'actual' : landcover . bandNames () . get ( 0 ),
'predicted' : 'predicted_landcover' ,
'order' : order
})
print ( 'Error matrix:' )
pprint ( error_matrix . getInfo ())
# Compute accuracy metrics from the error matrix.
print ( 'Overall accuracy:' , error_matrix . accuracy () . getInfo ())
print ( 'Consumer \' s accuracy:' )
pprint ( error_matrix . consumersAccuracy () . getInfo ())
print ( 'Producer \' s accuracy:' )
pprint ( error_matrix . producersAccuracy () . getInfo ())
print ( 'Kappa:' , error_matrix . kappa () . getInfo ())
إرسال ملاحظات
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0 . للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers . إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
هل تريد مشاركة ملاحظاتك معنا؟
[[["يسهُل فهم المحتوى.","easyToUnderstand","thumb-up"],["ساعَدني المحتوى في حلّ مشكلتي.","solvedMyProblem","thumb-up"],["غير ذلك","otherUp","thumb-up"]],[["لا يحتوي على المعلومات التي أحتاج إليها.","missingTheInformationINeed","thumb-down"],["الخطوات معقدة للغاية / كثيرة جدًا.","tooComplicatedTooManySteps","thumb-down"],["المحتوى قديم.","outOfDate","thumb-down"],["ثمة مشكلة في الترجمة.","translationIssue","thumb-down"],["مشكلة في العيّنات / التعليمات البرمجية","samplesCodeIssue","thumb-down"],["غير ذلك","otherDown","thumb-down"]],["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[],[]]