ee.Classifier.minimumDistance

Membuat pengklasifikasi jarak minimum untuk metrik jarak yang diberikan. Dalam mode CLASSIFICATION, class terdekat akan ditampilkan. Dalam mode REGRESI, jarak ke pusat kelas terdekat akan ditampilkan. Dalam mode RAW, jarak ke setiap pusat kelas akan ditampilkan.

PenggunaanHasil
ee.Classifier.minimumDistance(metric, kNearest)Pengklasifikasi
ArgumenJenisDetail
metricString, default: "euclidean"Metrik jarak yang akan digunakan. Opsi yang tersedia adalah:
  • 'euclidean' - Jarak Euclidean dari rata-rata kelas yang tidak dinormalisasi.
  • 'cosine' - sudut spektral dari rata-rata kelas yang tidak dinormalisasi.
  • 'mahalanobis' - Jarak Mahalanobis dari nilai rata-rata class.
  • 'manhattan' - Jarak Manhattan dari rata-rata kelas yang tidak dinormalisasi.
kNearestBilangan bulat, default: 1Jika lebih besar dari 1, hasilnya akan berisi array tetangga atau jarak terdekat k, berdasarkan setelan mode output. Jika kNearest lebih besar dari jumlah total class, nilainya akan ditetapkan sama dengan jumlah class.

Contoh

Editor Kode (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
              .select('B.*');

// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');

// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();

// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
  numPoints: 100,
  classBand: label,
  region: roi,
  scale: 10,
  geometries: true
});

// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');

// Train a minimum distance classifier (Mahalanobis distance metric) from
// the training sample.
var trainedClassifier = ee.Classifier.minimumDistance('mahalanobis').train({
  features: trainingSample,
  classProperty: label,
  inputProperties: img.bandNames()
});

// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());

// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());

// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());

// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);

// Add the layers to the map.
var classVis = {
  min: 0,
  max: 10,
  palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
            'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
    'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')

# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')

# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()

# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
    numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)

# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')

# Train a minimum distance classifier (Mahalanobis distance metric) from
# the training sample.
trained_classifier = ee.Classifier.minimumDistance('mahalanobis').train(
    features=training_sample,
    classProperty=label,
    inputProperties=img.bandNames(),
)

# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())

# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())

# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())

# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)

# Add the layers to the map.
class_vis = {
    'min': 0,
    'max': 10,
    'palette': [
        '006400',
        'ffbb22',
        'ffff4c',
        'f096ff',
        'fa0000',
        'b4b4b4',
        'f0f0f0',
        '0064c8',
        '0096a0',
        '00cf75',
        'fae6a0',
    ],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
    img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
    validation_sample, {'color': 'white'}, 'Validation sample', False
)
m