公告 :所有在
2025 年 4 月 15 日 之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件 ,才能继续使用 Earth Engine。如果您在 2025 年 9 月 26 日之前未完成验证,您的访问权限可能会被暂停。
发送反馈
ee.Algorithms.Image.Segmentation.SNIC
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
基于 SNIC(简单非迭代聚类)的超像素聚类。针对每个输入频段,输出一个聚类 ID 频段以及每个聚类的平均值。如果未将“种子”图片作为输入提供,则输出将包含一个“种子”波段,其中包含生成的种子位置。请参阅:Achanta, Radhakrishna 和 Susstrunk, Sabine,“Superpixels and Polygons using Simple Non-Iterative Clustering”,CVPR,2017 年。
用法 返回 ee.Algorithms.Image.Segmentation.SNIC(image, size , compactness , connectivity , neighborhoodSize , seeds )
图片
参数 类型 详细信息 image
图片 用于聚类的输入图片。 size
整数,默认值:5 超像素种子位置间距(以像素为单位)。如果提供了“种子”图片,则不会生成网格。 compactness
浮点数,默认值:1 紧凑性因子。值越大,聚类就越紧凑(方形)。将此值设置为 0 可停用空间距离加权。 connectivity
整数,默认值:8 连接。4 或 8。 neighborhoodSize
整数,默认值:null 平铺邻域大小(以避免平铺边界伪影)。默认值为 2 * size。 seeds
图片,默认值:null 如果提供,则任何非零值像素都将用作种子位置。接触(如“连通性”所指定)的像素被视为属于同一聚类。
示例
代码编辑器 (JavaScript)
// Note that the compactness and size parameters can have a significant impact
// on the result. They must be adjusted to meet image-specific characteristics
// and patterns, typically through trial. Pixel scale (map zoom level) is also
// important to consider. When exploring interactively through map tile
// visualization, the segmentation result it dependent on zoom level. If you
// need to evaluate the result at a specific scale, call .reproject() on the
// result, but do so with caution because it overrides the default scaling
// behavior that makes tile computation fast and efficient.
// Load a NAIP image for a neighborhood in Las Vegas.
var naip = ee . Image ( 'USDA/NAIP/DOQQ/m_3611554_sw_11_1_20170613' );
// Apply the SNIC algorithm to the image.
var snic = ee . Algorithms . Image . Segmentation . SNIC ({
image : naip ,
size : 30 ,
compactness : 0.1 ,
connectivity : 8 ,
});
// Display the original NAIP image as RGB.
// Lock map zoom to maintain the desired scale of the segmentation computation.
Map . setLocked ( false , 18 , 18 );
Map . setCenter ( - 115.32053 , 36.182016 , 18 );
Map . addLayer ( naip , null , 'NAIP RGB' );
// Display the clusters.
Map . addLayer ( snic . randomVisualizer (), null , 'Clusters' );
// Display the RGB cluster means.
var visParams = {
bands : [ 'R_mean' , 'G_mean' , 'B_mean' ],
min : 0 ,
max : 255
};
Map . addLayer ( snic , visParams , 'RGB cluster means' );
Python 设置
如需了解 Python API 和如何使用 geemap
进行交互式开发,请参阅
Python 环境 页面。
import ee
import geemap.core as geemap
Colab (Python)
# Note that the compactness and size parameters can have a significant impact
# on the result. They must be adjusted to meet image-specific characteristics
# and patterns, typically through trial. Pixel scale (map zoom level) is also
# important to consider. When exploring interactively through map tile
# visualization, the segmentation result it dependent on zoom level. If you
# need to evaluate the result at a specific scale, call .reproject() on the
# result, but do so with caution because it overrides the default scaling
# behavior that makes tile computation fast and efficient.
# Load a NAIP image for a neighborhood in Las Vegas.
naip = ee . Image ( 'USDA/NAIP/DOQQ/m_3611554_sw_11_1_20170613' )
# Apply the SNIC algorithm to the image.
snic = ee . Algorithms . Image . Segmentation . SNIC (
image = naip , size = 30 , compactness = 0.1 , connectivity = 8
)
# Display the original NAIP image as RGB.
m = geemap . Map ()
m . set_center ( - 115.32053 , 36.182016 , 18 )
m . add_layer ( naip , None , 'NAIP RGB' )
# Display the clusters.
m . add_layer ( snic . randomVisualizer (), None , 'Clusters' )
# Display the RGB cluster means.
vis_params = { 'bands' : [ 'R_mean' , 'G_mean' , 'B_mean' ], 'min' : 0 , 'max' : 255 }
m . add_layer ( snic , vis_params , 'RGB cluster means' )
m
发送反馈
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可 获得了许可,并且代码示例已根据 Apache 2.0 许可 获得了许可。有关详情,请参阅 Google 开发者网站政策 。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
需要向我们提供更多信息?
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-26。"],[],["SNIC clustering segments an image into superpixels, outputting cluster IDs and per-cluster averages for each input band. Key parameters include `size` (seed spacing), `compactness` (cluster shape), and `connectivity`. A user can provide `seeds` to define seed locations; otherwise, they are generated. The output `Image` includes cluster IDs, band averages, and optionally generated seed locations. Adjusting `size` and `compactness` is crucial for optimal results, which are also affected by pixel scale.\n"]]