公告 :凡是在
2025 年 4 月 15 日 前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格 ,才能繼續存取 Earth Engine。
提供意見
Export.classifier.toAsset
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
建立批次工作,將 ee.Classifier 匯出為 Earth Engine 資產。
僅支援 ee.Classifier.smileRandomForest、ee.Classifier.smileCart、ee.Classifier.DecisionTree 和 ee.Classifier.DecisionTreeEnsemble。
用量 傳回 Export.classifier.toAsset(classifier, description , assetId , priority )
引數 類型 詳細資料 classifier
ComputedObject 要匯出的分類器。 description
字串,選填 任務的使用者可讀名稱。預設值為「myExportClassifierTask」。 assetId
字串,選填 目的地資產 ID。 priority
數字,選填 專案中工作的優先順序。優先順序較高的工作會排定較早的時間。須為介於 0 至 9999 之間的整數。預設值為 100。
範例
程式碼編輯器 (JavaScript)
// First gather the training data for a random forest classifier.
// Let's use MCD12Q1 yearly landcover for the labels.
var landcover = ee . ImageCollection ( 'MODIS/061/MCD12Q1' )
. filterDate ( '2022-01-01' , '2022-12-31' )
. first ()
. select ( 'LC_Type1' );
// A region of interest for training our classifier.
var region = ee . Geometry . BBox ( 17.33 , 36.07 , 26.13 , 43.28 );
// Training features will be based on a Landsat 8 composite.
var l8 = ee . ImageCollection ( 'LANDSAT/LC08/C02/T1' )
. filterBounds ( region )
. filterDate ( '2022-01-01' , '2023-01-01' );
// Draw the Landsat composite, visualizing true color bands.
var landsatComposite = ee . Algorithms . Landsat . simpleComposite ({
collection : l8 ,
asFloat : true
});
Map . addLayer ( landsatComposite , {
min : 0 ,
max : 0.3 ,
bands : [ 'B3' , 'B2' , 'B1' ]
}, 'Landsat composite' );
// Make a training dataset by sampling the stacked images.
var training = landcover . addBands ( landsatComposite ). sample ({
region : region ,
scale : 30 ,
// With export to Classifier we can bump this higher to say 10,000.
numPixels : 1000
});
var classifier = ee . Classifier . smileRandomForest ({
// We can also increase the number of trees higher to ~100 if needed.
numberOfTrees : 3
}). train ({ features : training , classProperty : 'LC_Type1' });
// Create an export classifier task to run.
var assetId = 'projects/<project-name>/assets/<asset-name>' ; // <> modify these
Export . classifier . toAsset ({
classifier : classifier ,
description : 'classifier_export' ,
assetId : assetId
});
// Load the classifier after the export finishes and visualize.
var savedClassifier = ee . Classifier . load ( assetId )
var landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' +
'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff' ;
var landcoverVisualization = {
palette : landcoverPalette ,
min : 0 ,
max : 16 ,
format : 'png'
};
Map . addLayer (
landsatComposite . classify ( savedClassifier ),
landcoverVisualization ,
'Upsampled landcover, saved' );
Python 設定
請參閱「
Python 環境 」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# First gather the training data for a random forest classifier.
# Let's use MCD12Q1 yearly landcover for the labels.
landcover = ( ee . ImageCollection ( 'MODIS/061/MCD12Q1' )
. filterDate ( '2022-01-01' , '2022-12-31' )
. first ()
. select ( 'LC_Type1' ))
# A region of interest for training our classifier.
region = ee . Geometry . BBox ( 17.33 , 36.07 , 26.13 , 43.28 )
# Training features will be based on a Landsat 8 composite.
l8 = ( ee . ImageCollection ( 'LANDSAT/LC08/C02/T1' )
. filterBounds ( region )
. filterDate ( '2022-01-01' , '2023-01-01' ))
# Draw the Landsat composite, visualizing true color bands.
landsatComposite = ee . Algorithms . Landsat . simpleComposite (
collection = l8 , asFloat = True )
Map = geemap . Map ()
Map # Render the map in the notebook.
Map . addLayer ( landsatComposite , {
'min' : 0 ,
'max' : 0.3 ,
'bands' : [ 'B3' , 'B2' , 'B1' ]
}, 'Landsat composite' )
# Make a training dataset by sampling the stacked images.
training = landcover . addBands ( landsatComposite ) . sample (
region = region ,
scale = 30 ,
# With export to Classifier we can bump this higher to say 10,000.
numPixels = 1000
)
# We can also increase the number of trees higher to ~100 if needed.
classifier = ee . Classifier . smileRandomForest (
numberOfTrees = 3 ) . train ( features = training , classProperty = 'LC_Type1' )
# Create an export classifier task to run.
asset_id = 'projects/<project-name>/assets/<asset-name>' # <> modify these
ee . batch . Export . classifier . toAsset (
classifier = classifier ,
description = 'classifier_export' ,
assetId = asset_id
)
# Load the classifier after the export finishes and visualize.
savedClassifier = ee . Classifier . load ( asset_id )
landcover_palette = [
'05450a' , '086a10' , '54a708' , '78d203' , '009900' ,
'c6b044' , 'dcd159' , 'dade48' , 'fbff13' , 'b6ff05' ,
'27ff87' , 'c24f44' , 'a5a5a5' , 'ff6d4c' , '69fff8' ,
'f9ffa4' , '1c0dff' ]
landcoverVisualization = {
'palette' : landcover_palette ,
'min' : 0 ,
'max' : 16 ,
'format' : 'png'
}
Map . addLayer (
landsatComposite . classify ( savedClassifier ),
landcoverVisualization ,
'Upsampled landcover, saved' )
提供意見
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權 ,程式碼範例則為阿帕契 2.0 授權 。詳情請參閱《Google Developers 網站政策 》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-03-20 (世界標準時間)。
想進一步說明嗎?
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-03-20 (世界標準時間)。"],[[["Exports an Earth Engine classifier as an asset for later use."],["Allows customization of the export task with description, asset ID, and priority settings."],["Provides code examples in JavaScript and Python demonstrating the export and subsequent use of the saved classifier."],["Utilizes a Landsat-based composite and MODIS landcover data for training the classifier in the examples."],["Enables efficient saving and loading of trained classifiers within the Earth Engine platform."]]],["This content details exporting an `ee.Classifier` as an Earth Engine asset using `Export.classifier.toAsset`. Key actions include: creating a classifier, defining a training dataset using landcover data and Landsat composites, sampling training data, and then training the classifier. The export process involves specifying the `classifier`, `description`, `assetId`, and `priority`. After export, the saved classifier can be loaded and used for classification, then visualized.\n"]]