お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、アクセスを維持するために
非商用目的での利用資格を確認する必要があります。2025 年 9 月 26 日までに確認が完了していない場合、アクセスが保留されることがあります。
ee.ImageCollection.reduceToImage
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
各ピクセルと交差するすべてのフィーチャーの選択されたプロパティにリデューサーを適用して、フィーチャー コレクションから画像を作成します。
用途 | 戻り値 |
---|
ImageCollection.reduceToImage(properties, reducer) | 画像 |
引数 | タイプ | 詳細 |
---|
これ: collection | FeatureCollection | 各出力ピクセルと交差する特徴コレクション。 |
properties | リスト | 各機能から選択してリデューサーに渡すプロパティ。 |
reducer | レデューサ | 交差する各フィーチャーのプロパティを最終結果に結合してピクセルに保存する Reducer。 |
例
コードエディタ(JavaScript)
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022');
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0.01,
max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');
// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
properties: ['CLOUD_COVER'],
reducer: ee.Reducer.mean()
});
Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
col = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022')
)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')
# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)
m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-07-26 UTC。"],[],[]]