ee.ImageCollection.reduceToImage

تنشئ هذه الدالة صورة من مجموعة عناصر من خلال تطبيق أداة تقليل على السمات المحدّدة لجميع العناصر التي تتقاطع مع كل بكسل.

الاستخدامالمرتجعات
ImageCollection.reduceToImage(properties, reducer)صورة
الوسيطةالنوعالتفاصيل
هذا: collectionFeatureCollectionمجموعة العناصر الجغرافية التي سيتم تقاطعها مع كل بكسل من بكسلات الناتج
propertiesقائمةالسمات التي سيتم الاختيار من كل ميزة وتمريرها إلى أداة الاختزال.
reducerReducerدالة Reducer لدمج خصائص كل عنصر متقاطع في نتيجة نهائية يتم تخزينها في البكسل

أمثلة

محرّر الرموز البرمجية (JavaScript)

var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
  .filterDate('2021', '2022');

// Image visualization settings.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.01,
  max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');

// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
  properties: ['CLOUD_COVER'],
  reducer: ee.Reducer.mean()
});

Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');

إعداد Python

راجِع صفحة بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام geemap للتطوير التفاعلي.

import ee
import geemap.core as geemap

Colab (Python)

col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
    .filterDate('2021', '2022')
)

# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')

# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
    properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)

m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m