Earth Engine вводит
квоты для некоммерческих проектов , чтобы защитить совместно используемые вычислительные ресурсы и обеспечить надежную работу для всех. Все некоммерческие проекты должны выбрать уровень квот до
27 апреля 2026 года , иначе по умолчанию будет использоваться уровень «Сообщество». Квоты вступят в силу для всех проектов (независимо от даты выбора уровня)
27 апреля 2026 года .
Подробнее.
Отправить отзыв
ee.ImageCollection.qualityMosaic
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Объединяет все изображения в коллекцию, используя диапазон качества в качестве функции упорядочивания по пикселям.
Использование Возврат ImageCollection. qualityMosaic (qualityBand) Изображение
Аргумент Тип Подробности это: collection Коллекция изображений Коллекция мозаики. qualityBand Нить Название качественной группы в коллекции.
Примеры Редактор кода (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' );
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col . map ( function ( img ) {
var cldProb = img . select ( 'MSK_CLDPRB' );
var cldProbInv = cldProb . multiply ( - 1 ). rename ( 'quality' );
return img . addBands ( cldProbInv );
});
// Image visualization settings.
var visParams = {
bands : [ 'B4' , 'B3' , 'B2' ],
min : 0 ,
max : 4500
};
Map . setCenter ( - 103.19 , 40.14 , 9 );
Map . addLayer ( col , visParams , 'Collection (for series inspection)' , false );
// Generate a best-pixel mosaic from the image collection.
var img = col . qualityMosaic ( 'quality' );
Map . addLayer ( img , visParams , 'Best-pixel mosaic (by cloud score)' );
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col . qualityMosaic ( 'MSK_CLDPRB' );
Map . addLayer ( img , visParams , 'Worst-pixel mosaic (by cloud score)' , false ); Настройка Python
Информацию об API Python и использовании geemap для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' )
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand ( img ):
cldProb = img . select ( 'MSK_CLDPRB' )
cldProbInv = cldProb . multiply ( - 1 ) . rename ( 'quality' )
return img . addBands ( cldProbInv )
col = col . map ( invertCloudProbabilityBand )
# Image visualization settings.
vis_params = { 'bands' : [ 'B4' , 'B3' , 'B2' ], 'min' : 0 , 'max' : 4500 }
m = geemap . Map ()
m . set_center ( - 103.19 , 40.14 , 9 )
m . add_layer ( col , vis_params , 'Collection (for series inspection)' , False )
# Generate a best-pixel mosaic from the image collection.
img = col . qualityMosaic ( 'quality' )
m . add_layer ( img , vis_params , 'Best-pixel mosaic (by cloud score)' )
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col . qualityMosaic ( 'MSK_CLDPRB' )
m . add_layer ( img , vis_params , 'Worst-pixel mosaic (by cloud score)' , False )
m ,Объединяет все изображения в коллекцию, используя диапазон качества в качестве функции упорядочивания по пикселям.
Использование Возврат ImageCollection. qualityMosaic (qualityBand) Изображение
Аргумент Тип Подробности это: collection Коллекция изображений Коллекция мозаики. qualityBand Нить Название качественной группы в коллекции.
Примеры Редактор кода (JavaScript)
// The goal is to generate a best-pixel mosaic from a collection of
// Sentinel-2 images where pixel quality is based on a cloud probability score.
// The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
// quality-band-score to contribute to the resulting mosaic. All bands from the
// selected image (per-pixel) associated with the HIGHEST quality-band-score
// are included in the output.
// A Sentinel-2 SR image collection (2 months of images at a specific point).
var col = ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' );
// Because cloud probability ranges from 0 to 100 percent (low to high), we need
// to invert the MSK_CLDPRB band values so that low cloud probability pixels
// indicate high quality. Here, an inverting function is mapped over the
// image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
col = col . map ( function ( img ) {
var cldProb = img . select ( 'MSK_CLDPRB' );
var cldProbInv = cldProb . multiply ( - 1 ). rename ( 'quality' );
return img . addBands ( cldProbInv );
});
// Image visualization settings.
var visParams = {
bands : [ 'B4' , 'B3' , 'B2' ],
min : 0 ,
max : 4500
};
Map . setCenter ( - 103.19 , 40.14 , 9 );
Map . addLayer ( col , visParams , 'Collection (for series inspection)' , false );
// Generate a best-pixel mosaic from the image collection.
var img = col . qualityMosaic ( 'quality' );
Map . addLayer ( img , visParams , 'Best-pixel mosaic (by cloud score)' );
// To build the worst-pixel mosaic, according to cloud probability, use the
// MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
// probability score).
var img = col . qualityMosaic ( 'MSK_CLDPRB' );
Map . addLayer ( img , visParams , 'Worst-pixel mosaic (by cloud score)' , false ); Настройка Python
Информацию об API Python и использовании geemap для интерактивной разработки см. на странице «Среда Python» .
import ee
import geemap.core as geemap Colab (Python)
# The goal is to generate a best-pixel mosaic from a collection of
# Sentinel-2 images where pixel quality is based on a cloud probability score.
# The qualityMosaic() function selects the image (per-pixel) with the HIGHEST
# quality-band-score to contribute to the resulting mosaic. All bands from the
# selected image (per-pixel) associated with the HIGHEST quality-band-score
# are included in the output.
# A Sentinel-2 SR image collection (2 months of images at a specific point).
col = (
ee . ImageCollection ( 'COPERNICUS/S2_SR_HARMONIZED' )
. filterBounds ( ee . Geometry . Point ( - 103.19 , 40.14 ))
. filterDate ( '2020-07-01' , '2020-09-01' )
)
# Because cloud probability ranges from 0 to 100 percent (low to high), we need
# to invert the MSK_CLDPRB band values so that low cloud probability pixels
# indicate high quality. Here, an inverting function is mapped over the
# image collection, the inverted MSK_CLDPRB band is added as a "quality" band.
def invertCloudProbabilityBand ( img ):
cldProb = img . select ( 'MSK_CLDPRB' )
cldProbInv = cldProb . multiply ( - 1 ) . rename ( 'quality' )
return img . addBands ( cldProbInv )
col = col . map ( invertCloudProbabilityBand )
# Image visualization settings.
vis_params = { 'bands' : [ 'B4' , 'B3' , 'B2' ], 'min' : 0 , 'max' : 4500 }
m = geemap . Map ()
m . set_center ( - 103.19 , 40.14 , 9 )
m . add_layer ( col , vis_params , 'Collection (for series inspection)' , False )
# Generate a best-pixel mosaic from the image collection.
img = col . qualityMosaic ( 'quality' )
m . add_layer ( img , vis_params , 'Best-pixel mosaic (by cloud score)' )
# To build the worst-pixel mosaic, according to cloud probability, use the
# MSK_CLDPRB band as the quality band (the worst pixels have HIGHEST cloud
# probability score).
img = col . qualityMosaic ( 'MSK_CLDPRB' )
m . add_layer ( img , vis_params , 'Worst-pixel mosaic (by cloud score)' , False )
m
Отправить отзыв
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0" , а примеры кода – по лицензии Apache 2.0 . Подробнее об этом написано в правилах сайта . Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-24 UTC.
Хотите рассказать подробнее?
[[["Прост для понимания","easyToUnderstand","thumb-up"],["Помог мне решить мою проблему","solvedMyProblem","thumb-up"],["Другое","otherUp","thumb-up"]],[["Отсутствует нужная мне информация","missingTheInformationINeed","thumb-down"],["Слишком сложен/слишком много шагов","tooComplicatedTooManySteps","thumb-down"],["Устарел","outOfDate","thumb-down"],["Проблема с переводом текста","translationIssue","thumb-down"],["Проблемы образцов/кода","samplesCodeIssue","thumb-down"],["Другое","otherDown","thumb-down"]],["Последнее обновление: 2025-07-24 UTC."],[],[]]