Anúncio : todos os projetos não comerciais registrados para usar o Earth Engine antes de 
15 de abril de 2025  precisam 
verificar a qualificação não comercial  para manter o acesso. Se você não fizer a verificação até 26 de setembro de 2025, seu acesso poderá ser suspenso.
  
        
 
       
     
  
  
  
    
  
  
  
    
  
  
    
    Envie comentários
  
   
 
  
    
      ee.ImageCollection.mosaic
    
    
       
    
    
      
      Mantenha tudo organizado com as coleções
     
    
      
      Salve e categorize o conteúdo com base nas suas preferências.
     
   
     
  
      
     
  
  
  
   
  
  
    
    
    
  
  
Compõe todas as imagens em uma coleção usando a máscara.
Uso Retorna ImageCollection. mosaic ()Imagem 
Argumento Tipo Detalhes isso: collection ImageCollection A coleção para mosaico. 
  
  
  Exemplos 
  
    
  
  
    
    
  
  
  
  
    
    
    
      Editor de código (JavaScript)  
    
    
  
// Sentinel-2 image collection for July 2021 intersecting a point of interest. 
// Reflectance, cloud probability, and scene classification bands are selected. 
var   col   =   ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
   . filterDate ( '2021-07-01' ,   '2021-08-01' ) 
   . filterBounds ( ee . Geometry . Point ( - 122.373 ,   37.448 )) 
   . select ( 'B.*|MSK_CLDPRB|SCL' ); 
// Visualization parameters for reflectance RGB. 
var   visRefl   =   { 
   bands :   [ 'B11' ,   'B8' ,   'B3' ], 
   min :   0 , 
   max :   4000 
}; 
Map . setCenter ( - 122.373 ,   37.448 ,   9 ); 
Map . addLayer ( col ,   visRefl ,   'Collection reference' ,   false ); 
// Reduce the collection to a single image using a variety of methods. 
var   mean   =   col . mean (); 
Map . addLayer ( mean ,   visRefl ,   'Mean (B11, B8, B3)' ); 
var   median   =   col . median (); 
Map . addLayer ( median ,   visRefl ,   'Median (B11, B8, B3)' ); 
var   min   =   col . min (); 
Map . addLayer ( min ,   visRefl ,   'Min (B11, B8, B3)' ); 
var   max   =   col . max (); 
Map . addLayer ( max ,   visRefl ,   'Max (B11, B8, B3)' ); 
var   sum   =   col . sum (); 
Map . addLayer ( sum , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   500 },   'Sum (MSK_CLDPRB)' ); 
var   product   =   col . product (); 
Map . addLayer ( product , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   1e10 },   'Product (MSK_CLDPRB)' ); 
// ee.ImageCollection.mode returns the most common value. If multiple mode 
// values occur, the minimum mode value is returned. 
var   mode   =   col . mode (); 
Map . addLayer ( mode ,   { bands :   [ 'SCL' ],   min :   1 ,   max :   11 },   'Mode (pixel class)' ); 
// ee.ImageCollection.count returns the frequency of valid observations. Here, 
// image pixels are masked based on cloud probability to add valid observation 
// variability to the collection. Note that pixels with no valid observations 
// are masked out of the returned image. 
var   notCloudCol   =   col . map ( function ( img )   { 
   return   img . updateMask ( img . select ( 'MSK_CLDPRB' ). lte ( 10 )); 
}); 
var   count   =   notCloudCol . count (); 
Map . addLayer ( count ,   { min :   1 ,   max :   5 },   'Count (not cloud observations)' ); 
// ee.ImageCollection.mosaic composites images according to their position in 
// the collection (priority is last to first) and pixel mask status, where 
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
// pixels. 
var   mosaic   =   notCloudCol . mosaic (); 
Map . addLayer ( mosaic ,   visRefl ,   'Mosaic (B11, B8, B3)' );  
   
    
  
  
    
  
  
  
  
    
  
    
  Configuração do Python
  Consulte a página 
    Ambiente Python  para informações sobre a API Python e como usar
    geemap para desenvolvimento interativo.
  
import   ee 
import   geemap.core   as   geemap  
 
  
    
    
      Colab (Python)  
    
    
  
# Sentinel-2 image collection for July 2021 intersecting a point of interest. 
# Reflectance, cloud probability, and scene classification bands are selected. 
col  =  ( 
    ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
    . filterDate ( '2021-07-01' ,  '2021-08-01' ) 
    . filterBounds ( ee . Geometry . Point ( - 122.373 ,  37.448 )) 
    . select ( 'B.*|MSK_CLDPRB|SCL' ) 
) 
# Visualization parameters for reflectance RGB. 
vis_refl  =  { 'bands' :  [ 'B11' ,  'B8' ,  'B3' ],  'min' :  0 ,  'max' :  4000 } 
m  =  geemap . Map () 
m . set_center ( - 122.373 ,  37.448 ,  9 ) 
m . add_layer ( col ,  vis_refl ,  'Collection reference' ,  False ) 
# Reduce the collection to a single image using a variety of methods. 
mean  =  col . mean () 
m . add_layer ( mean ,  vis_refl ,  'Mean (B11, B8, B3)' ) 
median  =  col . median () 
m . add_layer ( median ,  vis_refl ,  'Median (B11, B8, B3)' ) 
min  =  col . min () 
m . add_layer ( min ,  vis_refl ,  'Min (B11, B8, B3)' ) 
max  =  col . max () 
m . add_layer ( max ,  vis_refl ,  'Max (B11, B8, B3)' ) 
sum  =  col . sum () 
m . add_layer ( 
    sum ,  { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  500 },  'Sum (MSK_CLDPRB)' 
) 
product  =  col . product () 
m . add_layer ( 
    product , 
    { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  1e10 }, 
    'Product (MSK_CLDPRB)' , 
) 
# ee.ImageCollection.mode returns the most common value. If multiple mode 
# values occur, the minimum mode value is returned. 
mode  =  col . mode () 
m . add_layer ( 
    mode ,  { 'bands' :  [ 'SCL' ],  'min' :  1 ,  'max' :  11 },  'Mode (pixel class)' 
) 
# ee.ImageCollection.count returns the frequency of valid observations. Here, 
# image pixels are masked based on cloud probability to add valid observation 
# variability to the collection. Note that pixels with no valid observations 
# are masked out of the returned image. 
not_cloud_col  =  col . map ( 
    lambda  img :  img . updateMask ( img . select ( 'MSK_CLDPRB' ) . lte ( 10 )) 
) 
count  =  not_cloud_col . count () 
m . add_layer ( count ,  { 'min' :  1 ,  'max' :  5 },  'Count (not cloud observations)' ) 
# ee.ImageCollection.mosaic composites images according to their position in 
# the collection (priority is last to first) and pixel mask status, where 
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
# pixels. 
mosaic  =  not_cloud_col . mosaic () 
m . add_layer ( mosaic ,  vis_refl ,  'Mosaic (B11, B8, B3)' ) 
m  
   
   
  
  
  
 
  
    
      
       
    
    
      
    
     
  
       
         
  
  
    
    Envie comentários
  
   
 
       
    
    
       
    
  
  
 
  Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons , e as amostras de código são licenciadas de acordo com a Licença Apache 2.0 . Para mais detalhes, consulte as políticas do site do Google Developers . Java é uma marca registrada da Oracle e/ou afiliadas.
  Última atualização 2025-07-26 UTC.
 
 
  
  
    
    
    
      
  
  
    Quer enviar seu feedback?
  
   
 
     
  
  
    
      [[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-07-26 UTC."],[],["The `mosaic()` function composites images within an `ImageCollection` into a single `Image`.  It prioritizes the order of images from last to first in the collection. The pixel mask status also plays a role, invalid pixels (mask value 0) are filled by valid pixels (mask value \u003e 0) from preceding images. This function can be used in both JavaScript and Python. Several other reduction functions are exemplified.\n"]]