Earth Engine は、共有コンピューティング リソースを保護し、すべてのユーザーに信頼性の高いパフォーマンスを提供するために、
非商用割り当て階層 を導入しています。すべての非商用プロジェクトは、
2026 年 4 月 27 日 までに割り当て階層を選択する必要があります。選択しない場合は、デフォルトでコミュニティ階層が使用されます。階層の割り当ては、
2026 年 4 月 27 日 に(階層の選択日に関係なく)すべてのプロジェクトで有効になります。
詳細
フィードバックを送信
ee.ImageCollection.mosaic
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
マスクを使用して、コレクション内のすべての画像を合成します。
用途 戻り値 ImageCollection. mosaic ()画像
引数 タイプ 詳細 これ: collection ImageCollection モザイク化するコレクション。
例
コードエディタ(JavaScript)
// Sentinel-2 image collection for July 2021 intersecting a point of interest.
// Reflectance, cloud probability, and scene classification bands are selected.
var col = ee . ImageCollection ( 'COPERNICUS/S2_SR' )
. filterDate ( '2021-07-01' , '2021-08-01' )
. filterBounds ( ee . Geometry . Point ( - 122.373 , 37.448 ))
. select ( 'B.*|MSK_CLDPRB|SCL' );
// Visualization parameters for reflectance RGB.
var visRefl = {
bands : [ 'B11' , 'B8' , 'B3' ],
min : 0 ,
max : 4000
};
Map . setCenter ( - 122.373 , 37.448 , 9 );
Map . addLayer ( col , visRefl , 'Collection reference' , false );
// Reduce the collection to a single image using a variety of methods.
var mean = col . mean ();
Map . addLayer ( mean , visRefl , 'Mean (B11, B8, B3)' );
var median = col . median ();
Map . addLayer ( median , visRefl , 'Median (B11, B8, B3)' );
var min = col . min ();
Map . addLayer ( min , visRefl , 'Min (B11, B8, B3)' );
var max = col . max ();
Map . addLayer ( max , visRefl , 'Max (B11, B8, B3)' );
var sum = col . sum ();
Map . addLayer ( sum ,
{ bands : [ 'MSK_CLDPRB' ], min : 0 , max : 500 }, 'Sum (MSK_CLDPRB)' );
var product = col . product ();
Map . addLayer ( product ,
{ bands : [ 'MSK_CLDPRB' ], min : 0 , max : 1e10 }, 'Product (MSK_CLDPRB)' );
// ee.ImageCollection.mode returns the most common value. If multiple mode
// values occur, the minimum mode value is returned.
var mode = col . mode ();
Map . addLayer ( mode , { bands : [ 'SCL' ], min : 1 , max : 11 }, 'Mode (pixel class)' );
// ee.ImageCollection.count returns the frequency of valid observations. Here,
// image pixels are masked based on cloud probability to add valid observation
// variability to the collection. Note that pixels with no valid observations
// are masked out of the returned image.
var notCloudCol = col . map ( function ( img ) {
return img . updateMask ( img . select ( 'MSK_CLDPRB' ). lte ( 10 ));
});
var count = notCloudCol . count ();
Map . addLayer ( count , { min : 1 , max : 5 }, 'Count (not cloud observations)' );
// ee.ImageCollection.mosaic composites images according to their position in
// the collection (priority is last to first) and pixel mask status, where
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0)
// pixels.
var mosaic = notCloudCol . mosaic ();
Map . addLayer ( mosaic , visRefl , 'Mosaic (B11, B8, B3)' );
Python の設定
Python API とインタラクティブな開発での geemap の使用については、
Python 環境 のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# Sentinel-2 image collection for July 2021 intersecting a point of interest.
# Reflectance, cloud probability, and scene classification bands are selected.
col = (
ee . ImageCollection ( 'COPERNICUS/S2_SR' )
. filterDate ( '2021-07-01' , '2021-08-01' )
. filterBounds ( ee . Geometry . Point ( - 122.373 , 37.448 ))
. select ( 'B.*|MSK_CLDPRB|SCL' )
)
# Visualization parameters for reflectance RGB.
vis_refl = { 'bands' : [ 'B11' , 'B8' , 'B3' ], 'min' : 0 , 'max' : 4000 }
m = geemap . Map ()
m . set_center ( - 122.373 , 37.448 , 9 )
m . add_layer ( col , vis_refl , 'Collection reference' , False )
# Reduce the collection to a single image using a variety of methods.
mean = col . mean ()
m . add_layer ( mean , vis_refl , 'Mean (B11, B8, B3)' )
median = col . median ()
m . add_layer ( median , vis_refl , 'Median (B11, B8, B3)' )
min = col . min ()
m . add_layer ( min , vis_refl , 'Min (B11, B8, B3)' )
max = col . max ()
m . add_layer ( max , vis_refl , 'Max (B11, B8, B3)' )
sum = col . sum ()
m . add_layer (
sum , { 'bands' : [ 'MSK_CLDPRB' ], 'min' : 0 , 'max' : 500 }, 'Sum (MSK_CLDPRB)'
)
product = col . product ()
m . add_layer (
product ,
{ 'bands' : [ 'MSK_CLDPRB' ], 'min' : 0 , 'max' : 1e10 },
'Product (MSK_CLDPRB)' ,
)
# ee.ImageCollection.mode returns the most common value. If multiple mode
# values occur, the minimum mode value is returned.
mode = col . mode ()
m . add_layer (
mode , { 'bands' : [ 'SCL' ], 'min' : 1 , 'max' : 11 }, 'Mode (pixel class)'
)
# ee.ImageCollection.count returns the frequency of valid observations. Here,
# image pixels are masked based on cloud probability to add valid observation
# variability to the collection. Note that pixels with no valid observations
# are masked out of the returned image.
not_cloud_col = col . map (
lambda img : img . updateMask ( img . select ( 'MSK_CLDPRB' ) . lte ( 10 ))
)
count = not_cloud_col . count ()
m . add_layer ( count , { 'min' : 1 , 'max' : 5 }, 'Count (not cloud observations)' )
# ee.ImageCollection.mosaic composites images according to their position in
# the collection (priority is last to first) and pixel mask status, where
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0)
# pixels.
mosaic = not_cloud_col . mosaic ()
m . add_layer ( mosaic , vis_refl , 'Mosaic (B11, B8, B3)' )
m
フィードバックを送信
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンス により使用許諾されます。コードサンプルは Apache 2.0 ライセンス により使用許諾されます。詳しくは、Google Developers サイトのポリシー をご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
ご意見をお聞かせください
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-07-26 UTC。"],[],["The `mosaic()` function composites images within an `ImageCollection` into a single `Image`. It prioritizes the order of images from last to first in the collection. The pixel mask status also plays a role, invalid pixels (mask value 0) are filled by valid pixels (mask value \u003e 0) from preceding images. This function can be used in both JavaScript and Python. Several other reduction functions are exemplified.\n"]]