Pengumuman : Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum 
15 April 2025  harus 
memverifikasi kelayakan nonkomersial  untuk mempertahankan akses. Jika Anda belum melakukan verifikasi hingga 26 September 2025, akses Anda mungkin ditangguhkan.
  
        
 
       
     
  
  
  
    
  
  
  
    
  
  
    
    Kirim masukan
  
   
 
  
    
      ee.ImageCollection.mosaic
    
    
       
    
    
      
      Tetap teratur dengan koleksi
     
    
      
      Simpan dan kategorikan konten berdasarkan preferensi Anda.
     
   
     
  
      
     
  
  
  
   
  
  
    
    
    
  
  
Menggabungkan semua gambar dalam koleksi, menggunakan mask.
Penggunaan Hasil ImageCollection. mosaic ()Gambar 
Argumen Jenis Detail ini: collection ImageCollection Koleksi ke mosaik. 
  
  
  Contoh 
  
    
  
  
    
    
  
  
  
  
    
    
    
      Code Editor (JavaScript)  
    
    
  
// Sentinel-2 image collection for July 2021 intersecting a point of interest. 
// Reflectance, cloud probability, and scene classification bands are selected. 
var   col   =   ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
   . filterDate ( '2021-07-01' ,   '2021-08-01' ) 
   . filterBounds ( ee . Geometry . Point ( - 122.373 ,   37.448 )) 
   . select ( 'B.*|MSK_CLDPRB|SCL' ); 
// Visualization parameters for reflectance RGB. 
var   visRefl   =   { 
   bands :   [ 'B11' ,   'B8' ,   'B3' ], 
   min :   0 , 
   max :   4000 
}; 
Map . setCenter ( - 122.373 ,   37.448 ,   9 ); 
Map . addLayer ( col ,   visRefl ,   'Collection reference' ,   false ); 
// Reduce the collection to a single image using a variety of methods. 
var   mean   =   col . mean (); 
Map . addLayer ( mean ,   visRefl ,   'Mean (B11, B8, B3)' ); 
var   median   =   col . median (); 
Map . addLayer ( median ,   visRefl ,   'Median (B11, B8, B3)' ); 
var   min   =   col . min (); 
Map . addLayer ( min ,   visRefl ,   'Min (B11, B8, B3)' ); 
var   max   =   col . max (); 
Map . addLayer ( max ,   visRefl ,   'Max (B11, B8, B3)' ); 
var   sum   =   col . sum (); 
Map . addLayer ( sum , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   500 },   'Sum (MSK_CLDPRB)' ); 
var   product   =   col . product (); 
Map . addLayer ( product , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   1e10 },   'Product (MSK_CLDPRB)' ); 
// ee.ImageCollection.mode returns the most common value. If multiple mode 
// values occur, the minimum mode value is returned. 
var   mode   =   col . mode (); 
Map . addLayer ( mode ,   { bands :   [ 'SCL' ],   min :   1 ,   max :   11 },   'Mode (pixel class)' ); 
// ee.ImageCollection.count returns the frequency of valid observations. Here, 
// image pixels are masked based on cloud probability to add valid observation 
// variability to the collection. Note that pixels with no valid observations 
// are masked out of the returned image. 
var   notCloudCol   =   col . map ( function ( img )   { 
   return   img . updateMask ( img . select ( 'MSK_CLDPRB' ). lte ( 10 )); 
}); 
var   count   =   notCloudCol . count (); 
Map . addLayer ( count ,   { min :   1 ,   max :   5 },   'Count (not cloud observations)' ); 
// ee.ImageCollection.mosaic composites images according to their position in 
// the collection (priority is last to first) and pixel mask status, where 
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
// pixels. 
var   mosaic   =   notCloudCol . mosaic (); 
Map . addLayer ( mosaic ,   visRefl ,   'Mosaic (B11, B8, B3)' );  
   
    
  
  
    
  
  
  
  
    
  
    
  Penyiapan Python
  Lihat halaman 
    Lingkungan Python  untuk mengetahui informasi tentang Python API dan penggunaan
    geemap untuk pengembangan interaktif.
  
import   ee 
import   geemap.core   as   geemap  
 
  
    
    
      Colab (Python)  
    
    
  
# Sentinel-2 image collection for July 2021 intersecting a point of interest. 
# Reflectance, cloud probability, and scene classification bands are selected. 
col  =  ( 
    ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
    . filterDate ( '2021-07-01' ,  '2021-08-01' ) 
    . filterBounds ( ee . Geometry . Point ( - 122.373 ,  37.448 )) 
    . select ( 'B.*|MSK_CLDPRB|SCL' ) 
) 
# Visualization parameters for reflectance RGB. 
vis_refl  =  { 'bands' :  [ 'B11' ,  'B8' ,  'B3' ],  'min' :  0 ,  'max' :  4000 } 
m  =  geemap . Map () 
m . set_center ( - 122.373 ,  37.448 ,  9 ) 
m . add_layer ( col ,  vis_refl ,  'Collection reference' ,  False ) 
# Reduce the collection to a single image using a variety of methods. 
mean  =  col . mean () 
m . add_layer ( mean ,  vis_refl ,  'Mean (B11, B8, B3)' ) 
median  =  col . median () 
m . add_layer ( median ,  vis_refl ,  'Median (B11, B8, B3)' ) 
min  =  col . min () 
m . add_layer ( min ,  vis_refl ,  'Min (B11, B8, B3)' ) 
max  =  col . max () 
m . add_layer ( max ,  vis_refl ,  'Max (B11, B8, B3)' ) 
sum  =  col . sum () 
m . add_layer ( 
    sum ,  { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  500 },  'Sum (MSK_CLDPRB)' 
) 
product  =  col . product () 
m . add_layer ( 
    product , 
    { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  1e10 }, 
    'Product (MSK_CLDPRB)' , 
) 
# ee.ImageCollection.mode returns the most common value. If multiple mode 
# values occur, the minimum mode value is returned. 
mode  =  col . mode () 
m . add_layer ( 
    mode ,  { 'bands' :  [ 'SCL' ],  'min' :  1 ,  'max' :  11 },  'Mode (pixel class)' 
) 
# ee.ImageCollection.count returns the frequency of valid observations. Here, 
# image pixels are masked based on cloud probability to add valid observation 
# variability to the collection. Note that pixels with no valid observations 
# are masked out of the returned image. 
not_cloud_col  =  col . map ( 
    lambda  img :  img . updateMask ( img . select ( 'MSK_CLDPRB' ) . lte ( 10 )) 
) 
count  =  not_cloud_col . count () 
m . add_layer ( count ,  { 'min' :  1 ,  'max' :  5 },  'Count (not cloud observations)' ) 
# ee.ImageCollection.mosaic composites images according to their position in 
# the collection (priority is last to first) and pixel mask status, where 
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
# pixels. 
mosaic  =  not_cloud_col . mosaic () 
m . add_layer ( mosaic ,  vis_refl ,  'Mosaic (B11, B8, B3)' ) 
m  
   
   
  
  
  
 
  
    
      
       
    
    
      
    
     
  
       
         
  
  
    
    Kirim masukan
  
   
 
       
    
    
       
    
  
  
 
  Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0 , sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0 . Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers . Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
  Terakhir diperbarui pada 2025-07-26 UTC.
 
 
  
  
    
    
    
      
  
  
    Ada masukan untuk kami?
  
   
 
     
  
  
    
      [[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-07-26 UTC."],[],["The `mosaic()` function composites images within an `ImageCollection` into a single `Image`.  It prioritizes the order of images from last to first in the collection. The pixel mask status also plays a role, invalid pixels (mask value 0) are filled by valid pixels (mask value \u003e 0) from preceding images. This function can be used in both JavaScript and Python. Several other reduction functions are exemplified.\n"]]