Annuncio : tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del 
15 aprile 2025  devono 
verificare l'idoneità non commerciale  per mantenere l'accesso. Se non hai eseguito la verifica entro il 26 settembre 2025, il tuo accesso potrebbe essere sospeso.
  
        
 
       
     
  
  
  
    
  
  
  
    
  
  
    
    Invia feedback
  
   
 
  
    
      ee.ImageCollection.mosaic
    
    
       
    
    
      
      Mantieni tutto organizzato con le raccolte
     
    
      
      Salva e classifica i contenuti in base alle tue preferenze.
     
   
     
  
      
     
  
  
  
   
  
  
    
    
    
  
  
Combina tutte le immagini di una raccolta utilizzando la maschera.
Utilizzo Resi ImageCollection. mosaic ()Immagine 
Argomento Tipo Dettagli questo: collection ImageCollection La raccolta da trasformare in mosaico. 
  
  
  Esempi 
  
    
  
  
    
    
  
  
  
  
    
    
    
      Editor di codice (JavaScript)  
    
    
  
// Sentinel-2 image collection for July 2021 intersecting a point of interest. 
// Reflectance, cloud probability, and scene classification bands are selected. 
var   col   =   ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
   . filterDate ( '2021-07-01' ,   '2021-08-01' ) 
   . filterBounds ( ee . Geometry . Point ( - 122.373 ,   37.448 )) 
   . select ( 'B.*|MSK_CLDPRB|SCL' ); 
// Visualization parameters for reflectance RGB. 
var   visRefl   =   { 
   bands :   [ 'B11' ,   'B8' ,   'B3' ], 
   min :   0 , 
   max :   4000 
}; 
Map . setCenter ( - 122.373 ,   37.448 ,   9 ); 
Map . addLayer ( col ,   visRefl ,   'Collection reference' ,   false ); 
// Reduce the collection to a single image using a variety of methods. 
var   mean   =   col . mean (); 
Map . addLayer ( mean ,   visRefl ,   'Mean (B11, B8, B3)' ); 
var   median   =   col . median (); 
Map . addLayer ( median ,   visRefl ,   'Median (B11, B8, B3)' ); 
var   min   =   col . min (); 
Map . addLayer ( min ,   visRefl ,   'Min (B11, B8, B3)' ); 
var   max   =   col . max (); 
Map . addLayer ( max ,   visRefl ,   'Max (B11, B8, B3)' ); 
var   sum   =   col . sum (); 
Map . addLayer ( sum , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   500 },   'Sum (MSK_CLDPRB)' ); 
var   product   =   col . product (); 
Map . addLayer ( product , 
   { bands :   [ 'MSK_CLDPRB' ],   min :   0 ,   max :   1e10 },   'Product (MSK_CLDPRB)' ); 
// ee.ImageCollection.mode returns the most common value. If multiple mode 
// values occur, the minimum mode value is returned. 
var   mode   =   col . mode (); 
Map . addLayer ( mode ,   { bands :   [ 'SCL' ],   min :   1 ,   max :   11 },   'Mode (pixel class)' ); 
// ee.ImageCollection.count returns the frequency of valid observations. Here, 
// image pixels are masked based on cloud probability to add valid observation 
// variability to the collection. Note that pixels with no valid observations 
// are masked out of the returned image. 
var   notCloudCol   =   col . map ( function ( img )   { 
   return   img . updateMask ( img . select ( 'MSK_CLDPRB' ). lte ( 10 )); 
}); 
var   count   =   notCloudCol . count (); 
Map . addLayer ( count ,   { min :   1 ,   max :   5 },   'Count (not cloud observations)' ); 
// ee.ImageCollection.mosaic composites images according to their position in 
// the collection (priority is last to first) and pixel mask status, where 
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
// pixels. 
var   mosaic   =   notCloudCol . mosaic (); 
Map . addLayer ( mosaic ,   visRefl ,   'Mosaic (B11, B8, B3)' );  
   
    
  
  
    
  
  
  
  
    
  
    
  Configurazione di Python
  Consulta la pagina 
    Ambiente Python  per informazioni sull'API Python e sull'utilizzo di
    geemap per lo sviluppo interattivo.
  
import   ee 
import   geemap.core   as   geemap  
 
  
    
    
      Colab (Python)  
    
    
  
# Sentinel-2 image collection for July 2021 intersecting a point of interest. 
# Reflectance, cloud probability, and scene classification bands are selected. 
col  =  ( 
    ee . ImageCollection ( 'COPERNICUS/S2_SR' ) 
    . filterDate ( '2021-07-01' ,  '2021-08-01' ) 
    . filterBounds ( ee . Geometry . Point ( - 122.373 ,  37.448 )) 
    . select ( 'B.*|MSK_CLDPRB|SCL' ) 
) 
# Visualization parameters for reflectance RGB. 
vis_refl  =  { 'bands' :  [ 'B11' ,  'B8' ,  'B3' ],  'min' :  0 ,  'max' :  4000 } 
m  =  geemap . Map () 
m . set_center ( - 122.373 ,  37.448 ,  9 ) 
m . add_layer ( col ,  vis_refl ,  'Collection reference' ,  False ) 
# Reduce the collection to a single image using a variety of methods. 
mean  =  col . mean () 
m . add_layer ( mean ,  vis_refl ,  'Mean (B11, B8, B3)' ) 
median  =  col . median () 
m . add_layer ( median ,  vis_refl ,  'Median (B11, B8, B3)' ) 
min  =  col . min () 
m . add_layer ( min ,  vis_refl ,  'Min (B11, B8, B3)' ) 
max  =  col . max () 
m . add_layer ( max ,  vis_refl ,  'Max (B11, B8, B3)' ) 
sum  =  col . sum () 
m . add_layer ( 
    sum ,  { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  500 },  'Sum (MSK_CLDPRB)' 
) 
product  =  col . product () 
m . add_layer ( 
    product , 
    { 'bands' :  [ 'MSK_CLDPRB' ],  'min' :  0 ,  'max' :  1e10 }, 
    'Product (MSK_CLDPRB)' , 
) 
# ee.ImageCollection.mode returns the most common value. If multiple mode 
# values occur, the minimum mode value is returned. 
mode  =  col . mode () 
m . add_layer ( 
    mode ,  { 'bands' :  [ 'SCL' ],  'min' :  1 ,  'max' :  11 },  'Mode (pixel class)' 
) 
# ee.ImageCollection.count returns the frequency of valid observations. Here, 
# image pixels are masked based on cloud probability to add valid observation 
# variability to the collection. Note that pixels with no valid observations 
# are masked out of the returned image. 
not_cloud_col  =  col . map ( 
    lambda  img :  img . updateMask ( img . select ( 'MSK_CLDPRB' ) . lte ( 10 )) 
) 
count  =  not_cloud_col . count () 
m . add_layer ( count ,  { 'min' :  1 ,  'max' :  5 },  'Count (not cloud observations)' ) 
# ee.ImageCollection.mosaic composites images according to their position in 
# the collection (priority is last to first) and pixel mask status, where 
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0) 
# pixels. 
mosaic  =  not_cloud_col . mosaic () 
m . add_layer ( mosaic ,  vis_refl ,  'Mosaic (B11, B8, B3)' ) 
m  
   
   
  
  
  
 
  
    
      
       
    
    
      
    
     
  
       
         
  
  
    
    Invia feedback
  
   
 
       
    
    
       
    
  
  
 
  Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0 , mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0 . Per ulteriori dettagli, consulta le norme del sito di Google Developers . Java è un marchio registrato di Oracle e/o delle sue consociate.
  Ultimo aggiornamento 2025-07-26 UTC.
 
 
  
  
    
    
    
      
  
  
    Vuoi dirci altro?
  
   
 
     
  
  
    
      [[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Mancano le informazioni di cui ho bisogno","missingTheInformationINeed","thumb-down"],["Troppo complicato/troppi passaggi","tooComplicatedTooManySteps","thumb-down"],["Obsoleti","outOfDate","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Problema relativo a esempi/codice","samplesCodeIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-07-26 UTC."],[],["The `mosaic()` function composites images within an `ImageCollection` into a single `Image`.  It prioritizes the order of images from last to first in the collection. The pixel mask status also plays a role, invalid pixels (mask value 0) are filled by valid pixels (mask value \u003e 0) from preceding images. This function can be used in both JavaScript and Python. Several other reduction functions are exemplified.\n"]]