Duyuru :
15 Nisan 2025 'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin erişimlerini sürdürebilmeleri için
ticari olmayan uygunluklarını doğrulamaları gerekir. 26 Eylül 2025'e kadar doğrulama yapmazsanız erişiminiz bekletilebilir.
Geri bildirim gönderin
ee.ImageCollection.fromImages
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Belirtilen resimleri içeren resim koleksiyonunu döndürür.
Kullanım İadeler ee.ImageCollection.fromImages(images)
ImageCollection
Bağımsız Değişken Tür Ayrıntılar images
Liste Koleksiyona dahil edilecek resimler.
Örnekler
Kod Düzenleyici (JavaScript)
// A series of images.
var img1 = ee . Image ( 0 );
var img2 = ee . Image ( 1 );
var img3 = ee . Image ( 2 );
// Convert the list of images into an image collection.
var col = ee . ImageCollection . fromImages ([ img1 , img2 , img3 ]);
print ( 'Collection from list of images' , col );
// The ee.ImageCollection.fromImages function is intended to coerce the image
// list to a collection when the list is an ambiguous, computed object fetched
// from the properties of a server-side object. For instance, a list
// of images retrieved from a ee.Feature property. Here, we set an image
// list as a property of a feature, retrieve it, and convert it to
// a collection. Notice that the ee.ImageCollection constructor fails to coerce
// the image list to a collection, but ee.ImageCollection.fromImages does.
var feature = ee . Feature ( null ). set ( 'img_list' , [ img1 , img2 , img3 ]);
var ambiguousImgList = feature . get ( 'img_list' );
print ( 'Coerced to collection' , ee . ImageCollection . fromImages ( ambiguousImgList ));
print ( 'NOT coerced to collection' , ee . ImageCollection ( ambiguousImgList ));
// A common use case is coercing an image list from a saveAll join to a
// image collection, like in this example of building a collection of mean
// annual NDVI images from a MODIS collection.
var modisCol = ee . ImageCollection ( 'MODIS/006/MOD13A2' )
. filterDate ( '2017' , '2021' )
. select ( 'NDVI' )
. map ( function ( img ) { return img . set ( 'year' , img . date (). get ( 'year' ))});
var distinctYearCol = modisCol . distinct ( 'year' );
var joinedCol = ee . Join . saveAll ( 'img_list' ). apply ({
primary : distinctYearCol ,
secondary : modisCol ,
condition : ee . Filter . equals ({ 'leftField' : 'year' , 'rightField' : 'year' })
});
var annualNdviMean = joinedCol . map ( function ( img ) {
return ee . ImageCollection . fromImages ( img . get ( 'img_list' )). mean ()
. copyProperties ( img , [ 'year' ]);
});
print ( 'Mean annual NDVI collection' , annualNdviMean );
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
# A series of images.
img1 = ee . Image ( 0 )
img2 = ee . Image ( 1 )
img3 = ee . Image ( 2 )
# Convert the list of images into an image collection.
col = ee . ImageCollection . fromImages ([ img1 , img2 , img3 ])
print ( 'Collection from list of images:' , col . getInfo ())
# The ee.ImageCollection.fromImages function is intended to coerce the image
# list to a collection when the list is an ambiguous, computed object fetched
# from the properties of a server-side object. For instance, a list
# of images retrieved from a ee.Feature property. Here, we set an image
# list as a property of a feature, retrieve it, and convert it to
# a collection. Notice that the ee.ImageCollection constructor fails to coerce
# the image list to a collection, but ee.ImageCollection.fromImages does.
feature = ee . Feature ( None ) . set ( 'img_list' , [ img1 , img2 , img3 ])
ambiguous_img_list = feature . get ( 'img_list' )
print (
'Coerced to collection:' ,
ee . ImageCollection . fromImages ( ambiguous_img_list ) . getInfo (),
)
print (
'NOT coerced to collection:' ,
ee . ImageCollection ( ambiguous_img_list ) . getInfo (),
)
# A common use case is coercing an image list from a saveAll join to a
# image collection, like in this example of building a collection of mean
# annual NDVI images from a MODIS collection.
modis_col = (
ee . ImageCollection ( 'MODIS/006/MOD13A2' )
. filterDate ( '2017' , '2021' )
. select ( 'NDVI' )
. map ( lambda img : img . set ( 'year' , img . date () . get ( 'year' )))
)
distinct_year_col = modis_col . distinct ( 'year' )
joined_col = ee . Join . saveAll ( 'img_list' ) . apply (
primary = distinct_year_col ,
secondary = modis_col ,
condition = ee . Filter . equals ( leftField = 'year' , rightField = 'year' ),
)
annual_ndvi_mean = joined_col . map (
lambda img : ee . ImageCollection . fromImages ( img . get ( 'img_list' ))
. mean ()
. copyProperties ( img , [ 'year' ])
)
print ( 'Mean annual NDVI collection:' , annual_ndvi_mean . getInfo ())
Geri bildirim gönderin
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları 'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
Bize geri bildirimde bulunmak mı istiyorsunuz?
[[["Anlaması kolay","easyToUnderstand","thumb-up"],["Sorunumu çözdü","solvedMyProblem","thumb-up"],["Diğer","otherUp","thumb-up"]],[["İhtiyacım olan bilgiler yok","missingTheInformationINeed","thumb-down"],["Çok karmaşık / çok fazla adım var","tooComplicatedTooManySteps","thumb-down"],["Güncel değil","outOfDate","thumb-down"],["Çeviri sorunu","translationIssue","thumb-down"],["Örnek veya kod sorunu","samplesCodeIssue","thumb-down"],["Diğer","otherDown","thumb-down"]],["Son güncelleme tarihi: 2025-07-26 UTC."],[],["`ee.ImageCollection.fromImages(images)` converts a list of images into an ImageCollection. This function is crucial for handling ambiguous, computed image lists, like those retrieved from server-side object properties. It successfully coerces image lists into collections, unlike the standard `ee.ImageCollection` constructor. A common use case is processing lists generated by `ee.Join.saveAll`, demonstrated by building a collection of mean annual NDVI images from MODIS data, efficiently grouping images and calculating yearly averages.\n"]]