公告 :凡是在
2025 年 4 月 15 日 前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格 ,才能繼續存取 Earth Engine。
提供意見
ee.ImageCollection.aggregate_sample_var
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
匯總集合中物件的指定屬性,並計算所選屬性值的樣本變異數。
用量 傳回 ImageCollection. aggregate_sample_var (property)
數字
引數 類型 詳細資料 這個:collection
FeatureCollection 要匯總的集合。 property
字串 要從集合的每個元素使用的屬性。
範例
程式碼編輯器 (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" )
. filterBounds ( ee . Geometry . Point ([ - 122.073 , 37.188 ]))
. filterDate ( '2018' , '2019' );
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER' ;
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values' , col . aggregate_array ( prop ));
print ( 'Count of property values' , col . aggregate_count ( prop ));
print ( 'Count of distinct property values' , col . aggregate_count_distinct ( prop ));
print ( 'First collection element property value' , col . aggregate_first ( prop ));
print ( 'Histogram of property values' , col . aggregate_histogram ( prop ));
print ( 'Min of property values' , col . aggregate_min ( prop ));
print ( 'Max of property values' , col . aggregate_max ( prop ));
// The following methods are applicable to numerical properties only.
print ( 'Mean of property values' , col . aggregate_mean ( prop ));
print ( 'Sum of property values' , col . aggregate_sum ( prop ));
print ( 'Product of property values' , col . aggregate_product ( prop ));
print ( 'Std dev (sample) of property values' , col . aggregate_sample_sd ( prop ));
print ( 'Variance (sample) of property values' , col . aggregate_sample_var ( prop ));
print ( 'Std dev (total) of property values' , col . aggregate_total_sd ( prop ));
print ( 'Variance (total) of property values' , col . aggregate_total_var ( prop ));
print ( 'Summary stats of property values' , col . aggregate_stats ( prop ));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID' ;
print ( 'List of property values (string)' , col . aggregate_array ( propString ));
print ( 'Min of property values (string)' , col . aggregate_min ( propString ));
print ( 'Max of property values (string)' , col . aggregate_max ( propString ));
Python 設定
請參閱
Python 環境 頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" ) . filterBounds (
ee . Geometry . Point ([ - 122.073 , 37.188 ])) . filterDate ( '2018' , '2019' )
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values:' , col . aggregate_array ( prop ) . getInfo ())
print ( 'Count of property values:' , col . aggregate_count ( prop ) . getInfo ())
print ( 'Count of distinct property values:' ,
col . aggregate_count_distinct ( prop ) . getInfo ())
print ( 'First collection element property value:' ,
col . aggregate_first ( prop ) . getInfo ())
print ( 'Histogram of property values:' )
pprint ( col . aggregate_histogram ( prop ) . getInfo ())
print ( 'Min of property values:' , col . aggregate_min ( prop ) . getInfo ())
print ( 'Max of property values:' , col . aggregate_max ( prop ) . getInfo ())
# The following methods are applicable to numerical properties only.
print ( 'Mean of property values:' , col . aggregate_mean ( prop ) . getInfo ())
print ( 'Sum of property values:' , col . aggregate_sum ( prop ) . getInfo ())
print ( 'Product of property values:' , col . aggregate_product ( prop ) . getInfo ())
print ( 'Std dev (sample) of property values:' ,
col . aggregate_sample_sd ( prop ) . getInfo ())
print ( 'Variance (sample) of property values:' ,
col . aggregate_sample_var ( prop ) . getInfo ())
print ( 'Std dev (total) of property values' ,
col . aggregate_total_sd ( prop ) . getInfo ())
print ( 'Variance (total) of property values:' ,
col . aggregate_total_var ( prop ) . getInfo ())
print ( 'Summary stats of property values:' )
pprint ( col . aggregate_stats ( prop ) . getInfo ())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print ( 'List of property values (string):' ,
col . aggregate_array ( prop_string ) . getInfo ())
print ( 'Min of property values (string):' ,
col . aggregate_min ( prop_string ) . getInfo ())
print ( 'Max of property values (string):' ,
col . aggregate_max ( prop_string ) . getInfo ())
提供意見
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權 ,程式碼範例則為阿帕契 2.0 授權 。詳情請參閱《Google Developers 網站政策 》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-26 (世界標準時間)。
想進一步說明嗎?
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-07-26 (世界標準時間)。"],[[["`aggregate_sample_var` calculates the sample variance of a specified property across an ImageCollection."],["It operates on a given property within each image of the collection."],["The result is a single number representing the sample variance of the chosen property's values."],["This function is part of a suite of aggregation methods that can provide various statistics about ImageCollection properties."]]],["The provided code demonstrates how to use `aggregate_*` functions on an `ImageCollection` to derive information about a specified property. Actions include listing all property values, getting counts, finding the first element's property value, creating histograms, and calculating statistical measures like min, max, mean, sum, product, standard deviation, and variance. These methods work on numeric properties, while string property methods are restricted to min and max (alphanumeric order).\n"]]