Anuncio : Todos los proyectos no comerciales registrados para usar Earth Engine antes del
15 de abril de 2025 deben
verificar su elegibilidad no comercial para mantener el acceso a Earth Engine.
Enviar comentarios
ee.ImageCollection.aggregate_histogram
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Agrega una propiedad determinada de los objetos en una colección y calcula un histograma de la propiedad seleccionada.
Uso Muestra ImageCollection. aggregate_histogram (property)
Diccionario
Argumento Tipo Detalles esta: collection
FeatureCollection Es la colección para agregar. property
String Es la propiedad que se usará de cada elemento de la colección.
Ejemplos
Editor de código (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" )
. filterBounds ( ee . Geometry . Point ([ - 122.073 , 37.188 ]))
. filterDate ( '2018' , '2019' );
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER' ;
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values' , col . aggregate_array ( prop ));
print ( 'Count of property values' , col . aggregate_count ( prop ));
print ( 'Count of distinct property values' , col . aggregate_count_distinct ( prop ));
print ( 'First collection element property value' , col . aggregate_first ( prop ));
print ( 'Histogram of property values' , col . aggregate_histogram ( prop ));
print ( 'Min of property values' , col . aggregate_min ( prop ));
print ( 'Max of property values' , col . aggregate_max ( prop ));
// The following methods are applicable to numerical properties only.
print ( 'Mean of property values' , col . aggregate_mean ( prop ));
print ( 'Sum of property values' , col . aggregate_sum ( prop ));
print ( 'Product of property values' , col . aggregate_product ( prop ));
print ( 'Std dev (sample) of property values' , col . aggregate_sample_sd ( prop ));
print ( 'Variance (sample) of property values' , col . aggregate_sample_var ( prop ));
print ( 'Std dev (total) of property values' , col . aggregate_total_sd ( prop ));
print ( 'Variance (total) of property values' , col . aggregate_total_var ( prop ));
print ( 'Summary stats of property values' , col . aggregate_stats ( prop ));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID' ;
print ( 'List of property values (string)' , col . aggregate_array ( propString ));
print ( 'Min of property values (string)' , col . aggregate_min ( propString ));
print ( 'Max of property values (string)' , col . aggregate_max ( propString ));
Configuración de Python
Consulta la página
Entorno de Python para obtener información sobre la API de Python y el uso de geemap
para el desarrollo interactivo.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" ) . filterBounds (
ee . Geometry . Point ([ - 122.073 , 37.188 ])) . filterDate ( '2018' , '2019' )
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values:' , col . aggregate_array ( prop ) . getInfo ())
print ( 'Count of property values:' , col . aggregate_count ( prop ) . getInfo ())
print ( 'Count of distinct property values:' ,
col . aggregate_count_distinct ( prop ) . getInfo ())
print ( 'First collection element property value:' ,
col . aggregate_first ( prop ) . getInfo ())
print ( 'Histogram of property values:' )
pprint ( col . aggregate_histogram ( prop ) . getInfo ())
print ( 'Min of property values:' , col . aggregate_min ( prop ) . getInfo ())
print ( 'Max of property values:' , col . aggregate_max ( prop ) . getInfo ())
# The following methods are applicable to numerical properties only.
print ( 'Mean of property values:' , col . aggregate_mean ( prop ) . getInfo ())
print ( 'Sum of property values:' , col . aggregate_sum ( prop ) . getInfo ())
print ( 'Product of property values:' , col . aggregate_product ( prop ) . getInfo ())
print ( 'Std dev (sample) of property values:' ,
col . aggregate_sample_sd ( prop ) . getInfo ())
print ( 'Variance (sample) of property values:' ,
col . aggregate_sample_var ( prop ) . getInfo ())
print ( 'Std dev (total) of property values:' ,
col . aggregate_total_sd ( prop ) . getInfo ())
print ( 'Variance (total) of property values:' ,
col . aggregate_total_var ( prop ) . getInfo ())
print ( 'Summary stats of property values:' )
pprint ( col . aggregate_stats ( prop ) . getInfo ())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print ( 'List of property values (string):' ,
col . aggregate_array ( prop_string ) . getInfo ())
print ( 'Min of property values (string):' ,
col . aggregate_min ( prop_string ) . getInfo ())
print ( 'Max of property values (string):' ,
col . aggregate_max ( prop_string ) . getInfo ())
Enviar comentarios
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons , y los ejemplos de código están sujetos a la licencia Apache 2.0 . Para obtener más información, consulta las políticas del sitio de Google Developers . Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-26 (UTC)
¿Quieres brindar más información?
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-07-26 (UTC)"],[[["`aggregate_histogram` calculates a histogram of a specified property across an ImageCollection."],["It takes the collection and the property name as inputs."],["The output is a dictionary containing the histogram data (e.g., bucket boundaries and counts)."],["This function is useful for understanding the distribution of property values within a collection, like cloud cover across satellite images."],["You can use the resulting histogram to visualize or analyze the frequency of different property values."]]],["The content details the use of `aggregate_histogram` and other `aggregate_*` functions within `ee.ImageCollection`. These functions analyze a collection's objects, focusing on a specified property. `aggregate_histogram` specifically generates a histogram of values for the chosen property, returning a dictionary. Other `aggregate_*` functions compute statistics, such as min, max, mean, sum, counts, variance and more. They operate on numerical properties, but some handle strings as well, using alphanumeric ordering.\n"]]