إشعار : يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
إرسال ملاحظات
ee.ImageCollection.aggregate_count_distinct
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تُجمِّع هذه الدالة البيانات حسب سمة معيّنة للعناصر في مجموعة، وتحسب عدد القيم المختلفة للسمة المحدّدة.
الاستخدام المرتجعات ImageCollection. aggregate_count_distinct (property)
العدد
الوسيطة النوع التفاصيل هذا: collection
FeatureCollection المجموعة المطلوب تجميعها. property
سلسلة السمة التي سيتم استخدامها من كل عنصر في المجموعة
أمثلة
محرّر الرموز البرمجية (JavaScript)
// A Lansat 8 TOA image collection for a specific year and location.
var col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" )
. filterBounds ( ee . Geometry . Point ([ - 122.073 , 37.188 ]))
. filterDate ( '2018' , '2019' );
// An image property of interest, percent cloud cover in this case.
var prop = 'CLOUD_COVER' ;
// Use ee.ImageCollection.aggregate_* functions to fetch information about
// values of a selected property across all images in the collection. For
// example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values' , col . aggregate_array ( prop ));
print ( 'Count of property values' , col . aggregate_count ( prop ));
print ( 'Count of distinct property values' , col . aggregate_count_distinct ( prop ));
print ( 'First collection element property value' , col . aggregate_first ( prop ));
print ( 'Histogram of property values' , col . aggregate_histogram ( prop ));
print ( 'Min of property values' , col . aggregate_min ( prop ));
print ( 'Max of property values' , col . aggregate_max ( prop ));
// The following methods are applicable to numerical properties only.
print ( 'Mean of property values' , col . aggregate_mean ( prop ));
print ( 'Sum of property values' , col . aggregate_sum ( prop ));
print ( 'Product of property values' , col . aggregate_product ( prop ));
print ( 'Std dev (sample) of property values' , col . aggregate_sample_sd ( prop ));
print ( 'Variance (sample) of property values' , col . aggregate_sample_var ( prop ));
print ( 'Std dev (total) of property values' , col . aggregate_total_sd ( prop ));
print ( 'Variance (total) of property values' , col . aggregate_total_var ( prop ));
print ( 'Summary stats of property values' , col . aggregate_stats ( prop ));
// Note that if the property is formatted as a string, min and max will
// respectively return the first and last values according to alphanumeric
// order of the property values.
var propString = 'LANDSAT_SCENE_ID' ;
print ( 'List of property values (string)' , col . aggregate_array ( propString ));
print ( 'Min of property values (string)' , col . aggregate_min ( propString ));
print ( 'Max of property values (string)' , col . aggregate_max ( propString ));
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap
للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# A Lansat 8 TOA image collection for a specific year and location.
col = ee . ImageCollection ( "LANDSAT/LC08/C02/T1_TOA" ) . filterBounds (
ee . Geometry . Point ([ - 122.073 , 37.188 ])) . filterDate ( '2018' , '2019' )
# An image property of interest, percent cloud cover in this case.
prop = 'CLOUD_COVER'
# Use ee.ImageCollection.aggregate_* functions to fetch information about
# values of a selected property across all images in the collection. For
# example, produce a list of all values, get counts, and calculate statistics.
print ( 'List of property values:' , col . aggregate_array ( prop ) . getInfo ())
print ( 'Count of property values:' , col . aggregate_count ( prop ) . getInfo ())
print ( 'Count of distinct property values:' ,
col . aggregate_count_distinct ( prop ) . getInfo ())
print ( 'First collection element property value:' ,
col . aggregate_first ( prop ) . getInfo ())
print ( 'Histogram of property values:' )
pprint ( col . aggregate_histogram ( prop ) . getInfo ())
print ( 'Min of property values:' , col . aggregate_min ( prop ) . getInfo ())
print ( 'Max of property values:' , col . aggregate_max ( prop ) . getInfo ())
# The following methods are applicable to numerical properties only.
print ( 'Mean of property values:' , col . aggregate_mean ( prop ) . getInfo ())
print ( 'Sum of property values:' , col . aggregate_sum ( prop ) . getInfo ())
print ( 'Product of property values:' , col . aggregate_product ( prop ) . getInfo ())
print ( 'Std dev (sample) of property values:' ,
col . aggregate_sample_sd ( prop ) . getInfo ())
print ( 'Variance (sample) of property values:' ,
col . aggregate_sample_var ( prop ) . getInfo ())
print ( 'Std dev (total) of property values:' ,
col . aggregate_total_sd ( prop ) . getInfo ())
print ( 'Variance (total) of property values:' ,
col . aggregate_total_var ( prop ) . getInfo ())
print ( 'Summary stats of property values:' )
pprint ( col . aggregate_stats ( prop ) . getInfo ())
# Note that if the property is formatted as a string, min and max will
# respectively return the first and last values according to alphanumeric
# order of the property values.
prop_string = 'LANDSAT_SCENE_ID'
print ( 'List of property values (string):' ,
col . aggregate_array ( prop_string ) . getInfo ())
print ( 'Min of property values (string):' ,
col . aggregate_min ( prop_string ) . getInfo ())
print ( 'Max of property values (string):' ,
col . aggregate_max ( prop_string ) . getInfo ())
إرسال ملاحظات
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0 . للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers . إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
هل تريد مشاركة ملاحظاتك معنا؟
[[["يسهُل فهم المحتوى.","easyToUnderstand","thumb-up"],["ساعَدني المحتوى في حلّ مشكلتي.","solvedMyProblem","thumb-up"],["غير ذلك","otherUp","thumb-up"]],[["لا يحتوي على المعلومات التي أحتاج إليها.","missingTheInformationINeed","thumb-down"],["الخطوات معقدة للغاية / كثيرة جدًا.","tooComplicatedTooManySteps","thumb-down"],["المحتوى قديم.","outOfDate","thumb-down"],["ثمة مشكلة في الترجمة.","translationIssue","thumb-down"],["مشكلة في العيّنات / التعليمات البرمجية","samplesCodeIssue","thumb-down"],["غير ذلك","otherDown","thumb-down"]],["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[[["`aggregate_count_distinct()` calculates the number of unique values for a specified property within an ImageCollection."],["It takes the ImageCollection and the property name as input."],["The result is a single number representing the count of distinct values."],["This function is useful for understanding the diversity of values associated with a specific property in an ImageCollection."]]],["The core functionality involves using `aggregate_*` functions on an `ImageCollection` to analyze a specific property. The `aggregate_count_distinct(property)` method returns the number of unique values for a given property across all images in the collection. Other functions include retrieving a list of property values, count of all values, first value, min/max, histogram, and statistical measures like mean, sum, variance, and standard deviation. The provided examples use cloud cover and scene ID properties for demonstration.\n"]]