Duyuru :
15 Nisan 2025 'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin erişimlerini sürdürebilmeleri için
ticari olmayan uygunluklarını doğrulamaları gerekir. 26 Eylül 2025'e kadar doğrulama yapmazsanız erişiminiz bekletilebilir.
Geri bildirim gönderin
ee.Image.distance
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Belirtilen mesafe çekirdeğini kullanarak her banttaki en yakın sıfır olmayan piksele olan mesafeyi hesaplar.
Kullanım İadeler Image. distance (kernel , skipMasked )
Resim
Bağımsız Değişken Tür Ayrıntılar bu: image
Resim Giriş resmi. kernel
Kernel, varsayılan: null Uzaklık çekirdeği. chebyshev, euclidean veya manhattan değerlerinden biri. skipMasked
Boole değeri, varsayılan: true Karşılık gelen giriş pikseli maskelenmişse çıkış piksellerini maskeler.
Örnekler
Kod Düzenleyici (JavaScript)
// The objective is to determine the per-pixel distance to a target
// feature (pixel value). In this example, the target feature is water in a
// land cover map.
// Import a Dynamic World land cover image and subset the 'label' band.
var lcImg = ee . Image (
'GOOGLE/DYNAMICWORLD/V1/20210726T171859_20210726T172345_T14TQS' )
. select ( 'label' );
// Create a binary image where the target feature is value 1, all else 0.
// In the Dynamic World map, water is represented as value 0, so we use the
// ee.Image.eq() relational operator to set it to 1.
var targetImg = lcImg . eq ( 0 );
// Set a max distance from target pixels to consider in the analysis. Pixels
// with distance greater than this value from target pixels will be masked out.
// Here, we are using units of meters, but the distance kernels also accept
// units of pixels.
var maxDistM = 10000 ; // 10 km
// Calculate distance to target pixels. Several distance kernels are provided.
// Euclidean distance.
var euclideanKernel = ee . Kernel . euclidean ( maxDistM , 'meters' );
var euclideanDist = targetImg . distance ( euclideanKernel );
var vis = { min : 0 , max : maxDistM };
Map . setCenter ( - 95.68 , 46.46 , 9 );
Map . addLayer ( euclideanDist , vis , 'Euclidean distance to target pixels' );
// Manhattan distance.
var manhattanKernel = ee . Kernel . manhattan ( maxDistM , 'meters' );
var manhattanDist = targetImg . distance ( manhattanKernel );
Map . addLayer ( manhattanDist , vis , 'Manhattan distance to target pixels' , false );
// Chebyshev distance.
var chebyshevKernel = ee . Kernel . chebyshev ( maxDistM , 'meters' );
var chebyshevDist = targetImg . distance ( chebyshevKernel );
Map . addLayer ( chebyshevDist , vis , 'Chebyshev distance to target pixels' , false );
// Add the target layer to the map; water is blue, all else masked out.
Map . addLayer ( targetImg . mask ( targetImg ), { palette : 'blue' }, 'Target pixels' );
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
# The objective is to determine the per-pixel distance to a target
# feature (pixel value). In this example, the target feature is water in a
# land cover map.
# Import a Dynamic World land cover image and subset the 'label' band.
lc_img = ee . Image (
'GOOGLE/DYNAMICWORLD/V1/20210726T171859_20210726T172345_T14TQS'
) . select ( 'label' )
# Create a binary image where the target feature is value 1, all else 0.
# In the Dynamic World map, water is represented as value 0, so we use the
# ee.Image.eq() relational operator to set it to 1.
target_img = lc_img . eq ( 0 )
# Set a max distance from target pixels to consider in the analysis. Pixels
# with distance greater than this value from target pixels will be masked out.
# Here, we are using units of meters, but the distance kernels also accept
# units of pixels.
max_dist_m = 10000 # 10 km
# Calculate distance to target pixels. Several distance kernels are provided.
# Euclidean distance.
euclidean_kernel = ee . Kernel . euclidean ( max_dist_m , 'meters' )
euclidean_dist = target_img . distance ( euclidean_kernel )
vis = { 'min' : 0 , 'max' : max_dist_m }
m = geemap . Map ()
m . set_center ( - 95.68 , 46.46 , 9 )
m . add_layer ( euclidean_dist , vis , 'Euclidean distance to target pixels' )
# Manhattan distance.
manhattan_kernel = ee . Kernel . manhattan ( max_dist_m , 'meters' )
manhattan_dist = target_img . distance ( manhattan_kernel )
m . add_layer (
manhattan_dist , vis , 'Manhattan distance to target pixels' , False
)
# Chebyshev distance.
chebyshev_kernel = ee . Kernel . chebyshev ( max_dist_m , 'meters' )
chebyshev_dist = target_img . distance ( chebyshev_kernel )
m . add_layer (
chebyshev_dist , vis , 'Chebyshev distance to target pixels' , False
)
# Add the target layer to the map water is blue, all else masked out.
m . add_layer (
target_img . mask ( target_img ), { 'palette' : 'blue' }, 'Target pixels'
)
m
Geri bildirim gönderin
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları 'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
Bize geri bildirimde bulunmak mı istiyorsunuz?
[[["Anlaması kolay","easyToUnderstand","thumb-up"],["Sorunumu çözdü","solvedMyProblem","thumb-up"],["Diğer","otherUp","thumb-up"]],[["İhtiyacım olan bilgiler yok","missingTheInformationINeed","thumb-down"],["Çok karmaşık / çok fazla adım var","tooComplicatedTooManySteps","thumb-down"],["Güncel değil","outOfDate","thumb-down"],["Çeviri sorunu","translationIssue","thumb-down"],["Örnek veya kod sorunu","samplesCodeIssue","thumb-down"],["Diğer","otherDown","thumb-down"]],["Son güncelleme tarihi: 2025-07-26 UTC."],[],[]]