ส่งความคิดเห็น
ee.Image.distance
จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน
บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ
คำนวณระยะทางไปยังพิกเซลที่ไม่ใช่ 0 ที่ใกล้ที่สุดในแต่ละแบนด์ โดยใช้เคอร์เนลระยะทางที่ระบุ
การใช้งาน การคืนสินค้า Image. distance (kernel , skipMasked )
รูปภาพ
อาร์กิวเมนต์ ประเภท รายละเอียด ดังนี้ image
รูปภาพ รูปภาพที่อินพุตเข้ามา kernel
เคอร์เนล ค่าเริ่มต้น: null เคอร์เนลระยะทาง อย่างใดอย่างหนึ่งต่อไปนี้ เชบีเชฟ, ยุคลิด หรือแมนฮัตตัน skipMasked
บูลีน ค่าเริ่มต้น: จริง มาสก์พิกเซลเอาต์พุตหากมาสก์พิกเซลอินพุตที่เกี่ยวข้อง
ตัวอย่าง
โปรแกรมแก้ไขโค้ด (JavaScript)
// The objective is to determine the per-pixel distance to a target
// feature (pixel value). In this example, the target feature is water in a
// land cover map.
// Import a Dynamic World land cover image and subset the 'label' band.
var lcImg = ee . Image (
'GOOGLE/DYNAMICWORLD/V1/20210726T171859_20210726T172345_T14TQS' )
. select ( 'label' );
// Create a binary image where the target feature is value 1, all else 0.
// In the Dynamic World map, water is represented as value 0, so we use the
// ee.Image.eq() relational operator to set it to 1.
var targetImg = lcImg . eq ( 0 );
// Set a max distance from target pixels to consider in the analysis. Pixels
// with distance greater than this value from target pixels will be masked out.
// Here, we are using units of meters, but the distance kernels also accept
// units of pixels.
var maxDistM = 10000 ; // 10 km
// Calculate distance to target pixels. Several distance kernels are provided.
// Euclidean distance.
var euclideanKernel = ee . Kernel . euclidean ( maxDistM , 'meters' );
var euclideanDist = targetImg . distance ( euclideanKernel );
var vis = { min : 0 , max : maxDistM };
Map . setCenter ( - 95.68 , 46.46 , 9 );
Map . addLayer ( euclideanDist , vis , 'Euclidean distance to target pixels' );
// Manhattan distance.
var manhattanKernel = ee . Kernel . manhattan ( maxDistM , 'meters' );
var manhattanDist = targetImg . distance ( manhattanKernel );
Map . addLayer ( manhattanDist , vis , 'Manhattan distance to target pixels' , false );
// Chebyshev distance.
var chebyshevKernel = ee . Kernel . chebyshev ( maxDistM , 'meters' );
var chebyshevDist = targetImg . distance ( chebyshevKernel );
Map . addLayer ( chebyshevDist , vis , 'Chebyshev distance to target pixels' , false );
// Add the target layer to the map; water is blue, all else masked out.
Map . addLayer ( targetImg . mask ( targetImg ), { palette : 'blue' }, 'Target pixels' );
การตั้งค่า Python
ดูข้อมูลเกี่ยวกับ Python API และการใช้ geemap
เพื่อการพัฒนาแบบอินเทอร์แอกทีฟได้ที่หน้า
สภาพแวดล้อม Python
import ee
import geemap.core as geemap
Colab (Python)
# The objective is to determine the per-pixel distance to a target
# feature (pixel value). In this example, the target feature is water in a
# land cover map.
# Import a Dynamic World land cover image and subset the 'label' band.
lc_img = ee . Image (
'GOOGLE/DYNAMICWORLD/V1/20210726T171859_20210726T172345_T14TQS'
) . select ( 'label' )
# Create a binary image where the target feature is value 1, all else 0.
# In the Dynamic World map, water is represented as value 0, so we use the
# ee.Image.eq() relational operator to set it to 1.
target_img = lc_img . eq ( 0 )
# Set a max distance from target pixels to consider in the analysis. Pixels
# with distance greater than this value from target pixels will be masked out.
# Here, we are using units of meters, but the distance kernels also accept
# units of pixels.
max_dist_m = 10000 # 10 km
# Calculate distance to target pixels. Several distance kernels are provided.
# Euclidean distance.
euclidean_kernel = ee . Kernel . euclidean ( max_dist_m , 'meters' )
euclidean_dist = target_img . distance ( euclidean_kernel )
vis = { 'min' : 0 , 'max' : max_dist_m }
m = geemap . Map ()
m . set_center ( - 95.68 , 46.46 , 9 )
m . add_layer ( euclidean_dist , vis , 'Euclidean distance to target pixels' )
# Manhattan distance.
manhattan_kernel = ee . Kernel . manhattan ( max_dist_m , 'meters' )
manhattan_dist = target_img . distance ( manhattan_kernel )
m . add_layer (
manhattan_dist , vis , 'Manhattan distance to target pixels' , False
)
# Chebyshev distance.
chebyshev_kernel = ee . Kernel . chebyshev ( max_dist_m , 'meters' )
chebyshev_dist = target_img . distance ( chebyshev_kernel )
m . add_layer (
chebyshev_dist , vis , 'Chebyshev distance to target pixels' , False
)
# Add the target layer to the map water is blue, all else masked out.
m . add_layer (
target_img . mask ( target_img ), { 'palette' : 'blue' }, 'Target pixels'
)
m
ส่งความคิดเห็น
เนื้อหาของหน้าเว็บนี้ได้รับอนุญาตภายใต้ใบอนุญาตที่ต้องระบุที่มาของครีเอทีฟคอมมอนส์ 4.0 และตัวอย่างโค้ดได้รับอนุญาตภายใต้ใบอนุญาต Apache 2.0 เว้นแต่จะระบุไว้เป็นอย่างอื่น โปรดดูรายละเอียดที่นโยบายเว็บไซต์ Google Developers Java เป็นเครื่องหมายการค้าจดทะเบียนของ Oracle และ/หรือบริษัทในเครือ
อัปเดตล่าสุด 2025-07-26 UTC
หากต้องการบอกให้เราทราบเพิ่มเติม
[[["เข้าใจง่าย","easyToUnderstand","thumb-up"],["แก้ปัญหาของฉันได้","solvedMyProblem","thumb-up"],["อื่นๆ","otherUp","thumb-up"]],[["ไม่มีข้อมูลที่ฉันต้องการ","missingTheInformationINeed","thumb-down"],["ซับซ้อนเกินไป/มีหลายขั้นตอนมากเกินไป","tooComplicatedTooManySteps","thumb-down"],["ล้าสมัย","outOfDate","thumb-down"],["ปัญหาเกี่ยวกับการแปล","translationIssue","thumb-down"],["ตัวอย่าง/ปัญหาเกี่ยวกับโค้ด","samplesCodeIssue","thumb-down"],["อื่นๆ","otherDown","thumb-down"]],["อัปเดตล่าสุด 2025-07-26 UTC"],[[["Computes the distance to the nearest non-zero pixel for each band in an image, using a specified distance kernel (Chebyshev, Euclidean, or Manhattan)."],["Accepts an input image, a distance kernel, and an optional parameter to mask output pixels corresponding to masked input pixels."],["Returns an image where pixel values represent the distance to the nearest non-zero pixel in the input."],["Offers flexibility in defining the distance kernel and handling masked pixels."],["Can be used to analyze proximity to specific features in images, such as determining the distance to water bodies in a land cover map."]]],[]]