[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-07-25 (世界標準時間)。"],[[["Calculates the minimum distance between two geometries, returning the result as a float."],["Accepts a right geometry as input, along with optional `maxError` for reprojection and `proj` for specifying the projection."],["If a projection isn't specified, calculations are performed in a spherical coordinate system with distances in meters."],["Can be applied to Point geometries, as demonstrated in the examples."]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional parameters: `maxError` (maximum tolerated error), `proj` (projection for calculation), and `spherical` (specifies spherical or elliptical calculation when `proj` is not given). The method returns a float value representing the calculated distance. The example code demonstrates how to define a `Point`, calculate the distance to another geometry, and visualize both elements on a map.\n"]]