ee.FeatureCollection.runBigQuery

執行 BigQuery 查詢,擷取結果並以 FeatureCollection 的形式呈現。

用量傳回
ee.FeatureCollection.runBigQuery(query, geometryColumn, maxBytesBilled)FeatureCollection
引數類型詳細資料
query字串要在 BigQuery 資源上執行的 GoogleSQL 查詢。
geometryColumn字串,預設值:空值要用來做為主要地形特徵幾何圖形的資料欄名稱。如未指定,系統會使用第一個幾何圖形資料欄。
maxBytesBilledLong,預設值:100000000000處理查詢時計費的位元組數上限。超過此上限的 BigQuery 工作會失敗,且不會產生費用。

範例

程式碼編輯器 (JavaScript)

// Get places from Overture Maps Dataset in BigQuery public data.
Map.setCenter(-3.69, 40.41, 12)
var mapGeometry= ee.Geometry(Map.getBounds(true)).toGeoJSONString();
var sql =
    "SELECT geometry, names.primary as name, categories.primary as category "
 + " FROM bigquery-public-data.overture_maps.place "
 + " WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('" + mapGeometry+ "'))";

var features = ee.FeatureCollection.runBigQuery({
  query: sql,
  geometryColumn: 'geometry'
});

// Display all relevant features on the map.
Map.addLayer(features,
             {'color': 'black'},
             'Places from Overture Maps Dataset');


// Create a histogram of the categories and print it.
var propertyOfInterest = 'category';
var histogram = features.filter(ee.Filter.notNull([propertyOfInterest]))
                        .aggregate_histogram(propertyOfInterest);
print(histogram);

// Create a frequency chart for the histogram.
var categories = histogram.keys().map(function(k) {
  return ee.Feature(null, {
    key: k,
    value: histogram.get(k)
  });
});
var sortedCategories = ee.FeatureCollection(categories).sort('value', false);
print(ui.Chart.feature.byFeature(sortedCategories).setChartType('Table'));

Python 設定

請參閱「 Python 環境」頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

import json
import pandas as pd

# Get places from Overture Maps Dataset in BigQuery public data.
location = ee.Geometry.Point(-3.69, 40.41)
map_geometry = json.dumps(location.buffer(5e3).getInfo())

sql = f"""SELECT geometry, names.primary as name, categories.primary as category
FROM bigquery-public-data.overture_maps.place
WHERE ST_INTERSECTS(geometry, ST_GEOGFROMGEOJSON('{map_geometry}'))"""

features = ee.FeatureCollection.runBigQuery(
    query=sql, geometryColumn="geometry"
)

# Display all relevant features on the map.
m = geemap.Map()
m.center_object(location, 13)
m.add_layer(features, {'color': 'black'}, 'Places from Overture Maps Dataset')
display(m)

# Create a histogram of the place categories.
property_of_interest = 'category'
histogram = (
    features.filter(
        ee.Filter.notNull([property_of_interest])
    ).aggregate_histogram(property_of_interest)
).getInfo()

# Display the histogram as a pandas DataFrame.
df = pd.DataFrame(list(histogram.items()), columns=['category', 'frequency'])
df = df.sort_values(by=['frequency'], ascending=False, ignore_index=True)
display(df)