お知らせ :
2025 年 4 月 15 日 より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、アクセスを維持するために
非商用目的での利用資格を確認 する必要があります。2025 年 9 月 26 日までに確認が完了していない場合、アクセスが保留されることがあります。
フィードバックを送信
ee.FeatureCollection.kriging
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
各ピクセルでクリギング推定器をサンプリングした結果を返します。
用途 戻り値 FeatureCollection. kriging (propertyName, shape, range, sill, nugget, maxDistance , reducer )
画像
引数 タイプ 詳細 これ: collection
FeatureCollection 推定のソースデータとして使用する特徴コレクション。 propertyName
文字列 推定するプロパティ(数値である必要があります)。 shape
文字列 セミバリオグラムの形状({exponential、gaussian、spherical} のいずれか)。 range
浮動小数点数 セミバリオグラムの範囲(メートル単位)。 sill
浮動小数点数 セミバリオグラムのシルの値。 nugget
浮動小数点数 セミバリオグラムのナゲット。 maxDistance
浮動小数点数、デフォルト: null 各ピクセルの計算に含まれる特徴量を決定する半径(メートル単位)。デフォルトはセミバリオグラムの範囲です。 reducer
Reducer、デフォルト: null 重複するポイントの propertyName 値を単一の値に折りたたむために使用されるリデューサー。
例
コードエディタ(JavaScript)
/**
* This example generates an interpolated surface using kriging from a
* FeatureCollection of random points that simulates a table of air temperature
* at ocean weather buoys.
*/
// Average air temperature at 2m height for June, 2020.
var img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' )
. select ([ 'mean_2m_air_temperature' ], [ 'tmean' ]);
// Region of interest: South Pacific Ocean.
var roi = ee . Geometry . Polygon (
[[[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ]]], null , false );
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img . sample (
{ region : roi , scale : 25000 , numPixels : 50 , geometries : true }); //250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc . kriging ({
propertyName : 'tmean' ,
shape : 'gaussian' ,
range : 2.8e6 ,
sill : 164 ,
nugget : 0.05 ,
maxDistance : 1.8e6 ,
reducer : ee . Reducer . mean ()
});
// Display the results on the map.
Map . setCenter ( - 137.47 , - 30.47 , 3 );
Map . addLayer ( tmeanImg , { min : 279 , max : 300 }, 'Temperature (K)' );
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境 のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' ) . select (
[ 'mean_2m_air_temperature' ], [ 'tmean' ]
)
# Region of interest: South Pacific Ocean.
roi = ee . Geometry . Polygon (
[[
[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ],
]],
None ,
False ,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img . sample ( region = roi , scale = 25000 , numPixels = 50 , geometries = True )
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc . kriging (
propertyName = 'tmean' ,
shape = 'gaussian' ,
range = 2.8e6 ,
sill = 164 ,
nugget = 0.05 ,
maxDistance = 1.8e6 ,
reducer = ee . Reducer . mean (),
)
# Display the results on the map.
m = geemap . Map ()
m . set_center ( - 137.47 , - 30.47 , 3 )
m . add_layer (
tmean_img ,
{ 'min' : 279 , 'max' : 300 , 'min' : 279 , 'max' : 300 },
'Temperature (K)' ,
)
m
フィードバックを送信
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンス により使用許諾されます。コードサンプルは Apache 2.0 ライセンス により使用許諾されます。詳しくは、Google Developers サイトのポリシー をご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
ご意見をお聞かせください
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-07-26 UTC。"],[],["The `kriging` method interpolates a surface from a `FeatureCollection` by sampling a Kriging estimator at each pixel, returning an `Image`. Key parameters include: `propertyName` (numeric property to estimate), `shape` (semivariogram shape), `range`, `sill`, and `nugget` (semivariogram values). `maxDistance` limits feature inclusion in pixel calculations. An optional `reducer` handles overlapping points. Example demonstrates creating a temperature surface from sampled points, setting Kriging parameters, and visualizing the result.\n"]]