Anuncio : Todos los proyectos no comerciales registrados para usar Earth Engine antes del
15 de abril de 2025 deben
verificar su elegibilidad no comercial para mantener el acceso. Si no realizas la verificación antes del 26 de septiembre de 2025, es posible que se suspenda tu acceso.
Enviar comentarios
ee.FeatureCollection.kriging
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Devuelve los resultados del muestreo de un estimador de Kriging en cada píxel.
Uso Muestra FeatureCollection. kriging (propertyName, shape, range, sill, nugget, maxDistance , reducer )
Imagen
Argumento Tipo Detalles esta: collection
FeatureCollection Es la colección de atributos que se usará como datos de origen para la estimación. propertyName
String Es la propiedad que se estimará (debe ser numérica). shape
String Forma del semivariograma (uno de {exponencial, gaussiano, esférico}). range
Número de punto flotante Es el rango del semivariograma, en metros. sill
Número de punto flotante Es el límite del semivariograma. nugget
Número de punto flotante Es el nugget del semivariograma. maxDistance
Número de punto flotante, valor predeterminado: nulo Es el radio que determina qué atributos se incluyen en el cálculo de cada píxel, en metros. El valor predeterminado es el rango del semivariograma. reducer
Reductor, valor predeterminado: nulo Es el reductor que se usa para contraer el valor de "propertyName" de los puntos superpuestos en un solo valor.
Ejemplos
Editor de código (JavaScript)
/**
* This example generates an interpolated surface using kriging from a
* FeatureCollection of random points that simulates a table of air temperature
* at ocean weather buoys.
*/
// Average air temperature at 2m height for June, 2020.
var img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' )
. select ([ 'mean_2m_air_temperature' ], [ 'tmean' ]);
// Region of interest: South Pacific Ocean.
var roi = ee . Geometry . Polygon (
[[[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ]]], null , false );
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img . sample (
{ region : roi , scale : 25000 , numPixels : 50 , geometries : true }); //250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc . kriging ({
propertyName : 'tmean' ,
shape : 'gaussian' ,
range : 2.8e6 ,
sill : 164 ,
nugget : 0.05 ,
maxDistance : 1.8e6 ,
reducer : ee . Reducer . mean ()
});
// Display the results on the map.
Map . setCenter ( - 137.47 , - 30.47 , 3 );
Map . addLayer ( tmeanImg , { min : 279 , max : 300 }, 'Temperature (K)' );
Configuración de Python
Consulta la página
Entorno de Python para obtener información sobre la API de Python y el uso de geemap
para el desarrollo interactivo.
import ee
import geemap.core as geemap
Colab (Python)
# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee . Image ( 'ECMWF/ERA5/MONTHLY/202006' ) . select (
[ 'mean_2m_air_temperature' ], [ 'tmean' ]
)
# Region of interest: South Pacific Ocean.
roi = ee . Geometry . Polygon (
[[
[ - 156.053 , - 16.240 ],
[ - 156.053 , - 44.968 ],
[ - 118.633 , - 44.968 ],
[ - 118.633 , - 16.240 ],
]],
None ,
False ,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img . sample ( region = roi , scale = 25000 , numPixels = 50 , geometries = True )
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc . kriging (
propertyName = 'tmean' ,
shape = 'gaussian' ,
range = 2.8e6 ,
sill = 164 ,
nugget = 0.05 ,
maxDistance = 1.8e6 ,
reducer = ee . Reducer . mean (),
)
# Display the results on the map.
m = geemap . Map ()
m . set_center ( - 137.47 , - 30.47 , 3 )
m . add_layer (
tmean_img ,
{ 'min' : 279 , 'max' : 300 , 'min' : 279 , 'max' : 300 },
'Temperature (K)' ,
)
m
Enviar comentarios
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons , y los ejemplos de código están sujetos a la licencia Apache 2.0 . Para obtener más información, consulta las políticas del sitio de Google Developers . Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-26 (UTC)
¿Quieres brindar más información?
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Falta la información que necesito","missingTheInformationINeed","thumb-down"],["Muy complicado o demasiados pasos","tooComplicatedTooManySteps","thumb-down"],["Desactualizado","outOfDate","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Problema con las muestras o los códigos","samplesCodeIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-07-26 (UTC)"],[],["The `kriging` method interpolates a surface from a `FeatureCollection` by sampling a Kriging estimator at each pixel, returning an `Image`. Key parameters include: `propertyName` (numeric property to estimate), `shape` (semivariogram shape), `range`, `sill`, and `nugget` (semivariogram values). `maxDistance` limits feature inclusion in pixel calculations. An optional `reducer` handles overlapping points. Example demonstrates creating a temperature surface from sampled points, setting Kriging parameters, and visualizing the result.\n"]]