Pengumuman : Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum
15 April 2025 harus
memverifikasi kelayakan nonkomersial untuk mempertahankan akses. Jika Anda belum melakukan verifikasi hingga 26 September 2025, akses Anda mungkin ditangguhkan.
Kirim masukan
ee.FeatureCollection.iterate
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Menerapkan fungsi yang disediakan pengguna ke setiap elemen koleksi. Fungsi yang disediakan pengguna diberi dua argumen: elemen saat ini, dan nilai yang ditampilkan oleh panggilan sebelumnya ke iterate() atau argumen pertama, untuk iterasi pertama. Hasilnya adalah nilai yang ditampilkan oleh panggilan terakhir ke fungsi yang disediakan pengguna.
Menampilkan hasil panggilan Collection.iterate().
Penggunaan Hasil FeatureCollection. iterate (algorithm, first )
ComputedObject
Argumen Jenis Detail ini: collection
Koleksi Instance Koleksi. algorithm
Fungsi Fungsi yang akan diterapkan ke setiap elemen. Harus mengambil dua argumen: elemen koleksi dan nilai dari iterasi sebelumnya. first
Objek, opsional Status awal.
Contoh
Code Editor (JavaScript)
/**
* CAUTION: ee.FeatureCollection.iterate can be less efficient than alternative
* solutions implemented using ee.FeatureCollection.map or by converting feature
* properties to an ee.Array object and using ee.Array.slice and
* ee.Array.arrayAccum methods. Avoid ee.FeatureCollection.iterate if possible.
*/
// Monthly precipitation accumulation for 2020.
var climate = ee . ImageCollection ( 'IDAHO_EPSCOR/TERRACLIMATE' )
. filterDate ( '2020-01-01' , '2021-01-01' )
. select ( 'pr' );
// Region of interest: north central New Mexico, USA.
var roi = ee . Geometry . BBox ( - 107.19 , 35.27 , - 104.56 , 36.83 );
// A FeatureCollection of mean monthly precipitation accumulation for the
// region of interest.
var meanPrecipTs = climate . map ( function ( image ) {
var meanPrecip = image . reduceRegion (
{ reducer : ee . Reducer . mean (), geometry : roi , scale : 5000 });
return ee . Feature ( roi , meanPrecip )
. set ( 'system:time_start' , image . get ( 'system:time_start' ));
});
// A cumulative sum function to apply to each feature in the
// precipitation FeatureCollection. The first input is the current feature and
// the second is a list of features that accumulates at each step of the
// iteration. The function fetches the last feature in the feature list, gets
// the cumulative precipitation sum value from it, and adds it to the current
// feature's precipitation value. The new cumulative precipitation sum is set
// as a property of the current feature, which is appended to the feature list
// that is passed onto the next step of the iteration.
var cumsum = function ( currentFeature , featureList ) {
featureList = ee . List ( featureList );
var previousSum = ee . Feature ( featureList . get ( - 1 )). getNumber ( 'pr_cumsum' );
var currentVal = ee . Feature ( currentFeature ). getNumber ( 'pr' );
var currentSum = previousSum . add ( currentVal );
return featureList . add ( currentFeature . set ( 'pr_cumsum' , currentSum ));
};
// Use "iterate" to cumulatively sum monthly precipitation over the year with
// the above defined "cumsum" function. Note that the feature list used in the
// "cumsum" function is initialized as the "first" variable. It includes a
// temporary feature with the "pr_cumsum" property set to 0; this feature is
// filtered out of the final FeatureCollection.
var first = ee . List ([ ee . Feature ( null , { pr_cumsum : 0 , first : true })]);
var precipCumSum =
ee . FeatureCollection ( ee . List ( meanPrecipTs . iterate ( cumsum , first )))
. filter ( ee . Filter . notNull ([ 'pr' ]));
// Inspect the outputs.
print ( 'Note cumulative precipitation ("pr_cumsum") property' ,
precipCumSum );
print ( ui . Chart . feature . byFeature (
precipCumSum , 'system:time_start' , [ 'pr' , 'pr_cumsum' ]));
Penyiapan Python
Lihat halaman
Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
geemap
untuk pengembangan interaktif.
import ee
import geemap.core as geemap
Colab (Python)
import altair as alt
# CAUTION: ee.FeatureCollection.iterate can be less efficient than alternative
# solutions implemented using ee.FeatureCollection.map or by converting feature
# properties to an ee.Array object and using ee.Array.slice and
# ee.Array.arrayAccum methods. Avoid ee.FeatureCollection.iterate if possible.
# Monthly precipitation accumulation for 2020.
climate = (
ee . ImageCollection ( 'IDAHO_EPSCOR/TERRACLIMATE' )
. filterDate ( '2020-01-01' , '2021-01-01' )
. select ( 'pr' )
)
# Region of interest: north central New Mexico, USA.
roi = ee . Geometry . BBox ( - 107.19 , 35.27 , - 104.56 , 36.83 )
# A FeatureCollection of mean monthly precipitation accumulation for the
# region of interest.
def mean_precip_ts_fun ( image ):
mean_precip = image . reduceRegion (
reducer = ee . Reducer . mean (), geometry = roi , scale = 5000
)
return ee . Feature ( roi , mean_precip ) . set (
'system:time_start' , image . get ( 'system:time_start' )
)
mean_precip_ts = climate . map ( mean_precip_ts_fun )
# A cumulative sum function to apply to each feature in the
# precipitation FeatureCollection. The first input is the current feature and
# the second is a list of features that accumulates at each step of the
# iteration. The function fetches the last feature in the feature list, gets
# the cumulative precipitation sum value from it, and adds it to the current
# feature's precipitation value. The new cumulative precipitation sum is set
# as a property of the current feature, which is appended to the feature list
# that is passed onto the next step of the iteration.
def cumsum ( current_feature , feature_list ):
feature_list = ee . List ( feature_list )
previous_sum = ee . Feature ( feature_list . get ( - 1 )) . getNumber ( 'pr_cumsum' )
current_val = ee . Feature ( current_feature ) . getNumber ( 'pr' )
current_sum = previous_sum . add ( current_val )
return feature_list . add ( current_feature . set ( 'pr_cumsum' , current_sum ))
# Use "iterate" to cumulatively sum monthly precipitation over the year with
# the above defined "cumsum" function. Note that the feature list used in the
# "cumsum" function is initialized as the "first" variable. It includes a
# temporary feature with the "pr_cumsum" property set to 0 this feature is
# filtered out of the final FeatureCollection.
first = ee . List ([ ee . Feature ( None , { 'pr_cumsum' : 0 , 'first' : True })])
precip_cum_sum = ee . FeatureCollection (
ee . List ( mean_precip_ts . iterate ( cumsum , first ))
) . filter ( ee . Filter . notNull ([ 'pr' ]))
precip_cum_sum = precip_cum_sum . map (
lambda feature : feature . set (
'date' ,
ee . Date ( feature . getNumber ( 'system:time_start' )) . format ( 'YYYY-MM-dd' ),
)
)
# Inspect the outputs.
display ( 'Note cumulative precipitation ("pr_cumsum") property' , precip_cum_sum )
df = geemap . ee_to_df ( precip_cum_sum , [ 'date' , 'pr' , 'pr_cumsum' ])
display ( df )
chart = (
alt . Chart ( df )
. mark_line ()
. encode ( x = 'date:T' , y = 'pr:Q' , color = alt . value ( 'blue' ))
)
chart += (
alt . Chart ( df )
. mark_line ()
. encode ( x = 'date:T' , y = 'pr_cumsum:Q' , color = alt . value ( 'red' ))
)
chart
Kirim masukan
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0 , sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0 . Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers . Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
Ada masukan untuk kami?
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-07-26 UTC."],[],[]]