Thông báo : Tất cả dự án phi thương mại đã đăng ký sử dụng Earth Engine trước
ngày 15 tháng 4 năm 2025 phải
xác minh điều kiện sử dụng phi thương mại để duy trì quyền truy cập. Nếu bạn chưa xác minh trước ngày 26 tháng 9 năm 2025, quyền truy cập của bạn có thể bị tạm ngưng.
Gửi ý kiến phản hồi
ee.FeatureCollection.cluster
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Nhóm từng đối tượng trong một tập hợp, thêm một cột mới vào từng đối tượng chứa số nhóm mà đối tượng đó được chỉ định.
Cách sử dụng Giá trị trả về FeatureCollection. cluster (clusterer, outputName )
FeatureCollection
Đối số Loại Thông tin chi tiết this: features
FeatureCollection Tập hợp các đối tượng cần phân cụm. Mỗi đối tượng phải chứa tất cả các thuộc tính trong giản đồ của trình phân cụm. clusterer
Clusterer Trình phân cụm để sử dụng. outputName
Chuỗi, mặc định: "cluster" Tên của thuộc tính đầu ra sẽ được thêm.
Ví dụ
Trình soạn thảo mã (JavaScript)
// Import a Sentinel-2 surface reflectance image.
var image = ee . Image ( 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG' );
// Get the image geometry to define the geographical bounds of a point sample.
var imageBounds = image . geometry ();
// Sample the image at a set of random points; a feature collection is returned.
var pointSampleFc = image . sample (
{ region : imageBounds , scale : 20 , numPixels : 1000 , geometries : true });
// Instantiate a k-means clusterer and train it.
var clusterer = ee . Clusterer . wekaKMeans ( 5 ). train ( pointSampleFc );
// Cluster the input using the trained clusterer; optionally specify the name
// of the output cluster ID property.
var clusteredFc = pointSampleFc . cluster ( clusterer , 'spectral_cluster' );
print ( 'Note added "spectral_cluster" property for an example feature' ,
clusteredFc . first (). toDictionary ());
// Visualize the clusters by applying a unique color to each cluster ID.
var palette = ee . List ([ '8dd3c7' , 'ffffb3' , 'bebada' , 'fb8072' , '80b1d3' ]);
var clusterVis = clusteredFc . map ( function ( feature ) {
return feature . set ( 'style' , {
color : palette . get ( feature . get ( 'spectral_cluster' )),
});
}). style ({ styleProperty : 'style' });
// Display the points colored by cluster ID with the S2 image.
Map . setCenter ( - 122.35 , 37.47 , 9 );
Map . addLayer ( image , { bands : [ 'B4' , 'B3' , 'B2' ], min : 0 , max : 1500 }, 'S2 image' );
Map . addLayer ( clusterVis , null , 'Clusters' );
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
cho quá trình phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Import a Sentinel-2 surface reflectance image.
image = ee . Image ( 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG' )
# Get the image geometry to define the geographical bounds of a point sample.
image_bounds = image . geometry ()
# Sample the image at a set of random points a feature collection is returned.
point_sample_fc = image . sample (
region = image_bounds , scale = 20 , numPixels = 1000 , geometries = True
)
# Instantiate a k-means clusterer and train it.
clusterer = ee . Clusterer . wekaKMeans ( 5 ) . train ( point_sample_fc )
# Cluster the input using the trained clusterer optionally specify the name
# of the output cluster ID property.
clustered_fc = point_sample_fc . cluster ( clusterer , 'spectral_cluster' )
display (
'Note added "spectral_cluster" property for an example feature' ,
clustered_fc . first () . toDictionary (),
)
# Visualize the clusters by applying a unique color to each cluster ID.
palette = ee . List ([ '8dd3c7' , 'ffffb3' , 'bebada' , 'fb8072' , '80b1d3' ])
cluster_vis = clustered_fc . map (
lambda feature : feature . set (
'style' , { 'color' : palette . get ( feature . get ( 'spectral_cluster' ))}
)
) . style ( styleProperty = 'style' )
# Display the points colored by cluster ID with the S2 image.
m = geemap . Map ()
m . set_center ( - 122.35 , 37.47 , 9 )
m . add_layer (
image , { 'bands' : [ 'B4' , 'B3' , 'B2' ], 'min' : 0 , 'max' : 1500 }, 'S2 image'
)
m . add_layer ( cluster_vis , None , 'Clusters' )
m
Gửi ý kiến phản hồi
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0 . Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers . Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
Bạn muốn chia sẻ thêm với chúng tôi?
[[["Dễ hiểu","easyToUnderstand","thumb-up"],["Giúp tôi giải quyết được vấn đề","solvedMyProblem","thumb-up"],["Khác","otherUp","thumb-up"]],[["Thiếu thông tin tôi cần","missingTheInformationINeed","thumb-down"],["Quá phức tạp/quá nhiều bước","tooComplicatedTooManySteps","thumb-down"],["Đã lỗi thời","outOfDate","thumb-down"],["Vấn đề về bản dịch","translationIssue","thumb-down"],["Vấn đề về mẫu/mã","samplesCodeIssue","thumb-down"],["Khác","otherDown","thumb-down"]],["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[],[]]