お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、アクセスを維持するために
非商用目的での利用資格を確認する必要があります。2025 年 9 月 26 日までに確認が完了していない場合、アクセスが保留されることがあります。
ee.FeatureCollection.cluster
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
コレクション内の各特徴をクラスタリングし、割り当てられたクラスタ番号を含む新しい列を各特徴に追加します。
用途 | 戻り値 |
---|
FeatureCollection.cluster(clusterer, outputName) | FeatureCollection |
引数 | タイプ | 詳細 |
---|
これ: features | FeatureCollection | クラスタリングする特徴のコレクション。各特徴には、クラスタリングのスキーマ内のすべてのプロパティが含まれている必要があります。 |
clusterer | クラスタリング | 使用するクラスタリング。 |
outputName | 文字列、デフォルト: "cluster" | 追加する出力プロパティの名前。 |
例
コードエディタ(JavaScript)
// Import a Sentinel-2 surface reflectance image.
var image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');
// Get the image geometry to define the geographical bounds of a point sample.
var imageBounds = image.geometry();
// Sample the image at a set of random points; a feature collection is returned.
var pointSampleFc = image.sample(
{region: imageBounds, scale: 20, numPixels: 1000, geometries: true});
// Instantiate a k-means clusterer and train it.
var clusterer = ee.Clusterer.wekaKMeans(5).train(pointSampleFc);
// Cluster the input using the trained clusterer; optionally specify the name
// of the output cluster ID property.
var clusteredFc = pointSampleFc.cluster(clusterer, 'spectral_cluster');
print('Note added "spectral_cluster" property for an example feature',
clusteredFc.first().toDictionary());
// Visualize the clusters by applying a unique color to each cluster ID.
var palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3']);
var clusterVis = clusteredFc.map(function(feature) {
return feature.set('style', {
color: palette.get(feature.get('spectral_cluster')),
});
}).style({styleProperty: 'style'});
// Display the points colored by cluster ID with the S2 image.
Map.setCenter(-122.35, 37.47, 9);
Map.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0, max: 1500}, 'S2 image');
Map.addLayer(clusterVis, null, 'Clusters');
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# Import a Sentinel-2 surface reflectance image.
image = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
# Get the image geometry to define the geographical bounds of a point sample.
image_bounds = image.geometry()
# Sample the image at a set of random points a feature collection is returned.
point_sample_fc = image.sample(
region=image_bounds, scale=20, numPixels=1000, geometries=True
)
# Instantiate a k-means clusterer and train it.
clusterer = ee.Clusterer.wekaKMeans(5).train(point_sample_fc)
# Cluster the input using the trained clusterer optionally specify the name
# of the output cluster ID property.
clustered_fc = point_sample_fc.cluster(clusterer, 'spectral_cluster')
display(
'Note added "spectral_cluster" property for an example feature',
clustered_fc.first().toDictionary(),
)
# Visualize the clusters by applying a unique color to each cluster ID.
palette = ee.List(['8dd3c7', 'ffffb3', 'bebada', 'fb8072', '80b1d3'])
cluster_vis = clustered_fc.map(
lambda feature: feature.set(
'style', {'color': palette.get(feature.get('spectral_cluster'))}
)
).style(styleProperty='style')
# Display the points colored by cluster ID with the S2 image.
m = geemap.Map()
m.set_center(-122.35, 37.47, 9)
m.add_layer(
image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 1500}, 'S2 image'
)
m.add_layer(cluster_vis, None, 'Clusters')
m
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-07-26 UTC。"],[],[]]