Earth Engine sẽ giới thiệu
các bậc hạn mức phi thương mại để bảo vệ các tài nguyên điện toán dùng chung và đảm bảo hiệu suất đáng tin cậy cho mọi người. Tất cả các dự án phi thương mại đều cần chọn một cấp hạn mức muộn nhất vào
ngày 27 tháng 4 năm 2026 , nếu không sẽ sử dụng Cấp cộng đồng theo mặc định. Hạn mức theo cấp sẽ có hiệu lực đối với tất cả các dự án (bất kể ngày chọn cấp) từ
ngày 27 tháng 4 năm 2026 .
Tìm hiểu thêm.
Gửi ý kiến phản hồi
ee.FeatureCollection.classify
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Phân loại từng đối tượng trong một tập hợp.
Cách sử dụng Giá trị trả về FeatureCollection. classify (classifier, outputName )FeatureCollection
Đối số Loại Thông tin chi tiết this: features FeatureCollection Tập hợp các đối tượng cần phân loại. Mỗi đối tượng phải chứa tất cả các thuộc tính trong giản đồ của trình phân loại. classifierCông cụ phân loại Trình phân loại cần sử dụng. outputNameChuỗi, mặc định: "classification" Tên của thuộc tính đầu ra sẽ được thêm. Đối số này sẽ bị bỏ qua nếu trình phân loại có nhiều đầu ra.
Ví dụ
Trình soạn thảo mã (JavaScript)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ). select ( 'SR_B[1-7]' );
var landcover =
ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ). select ( 'landcover' );
var sampleSource = spectral . addBands ( landcover );
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource . sample ({
region : spectral . geometry (), // sample only from within Landsat image extent
scale : 30 ,
numPixels : 2000 ,
geometries : true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
. randomColumn ({ distribution : 'uniform' });
print ( 'Sample for classifier development' , sample );
// Split out ~80% of the sample for training the classifier.
var training = sample . filter ( 'random < 0.8' );
print ( 'Training set' , training );
// Train a random forest classifier.
var classifier = ee . Classifier . smileRandomForest ( 10 ). train ({
features : training ,
classProperty : landcover . bandNames (). get ( 0 ),
inputProperties : spectral . bandNames ()
});
// Classify the sample.
var predictions = sample . classify (
{ classifier : classifier , outputName : 'predicted_landcover' });
print ( 'Predictions' , predictions );
// Split out the validation feature set.
var validation = predictions . filter ( 'random >= 0.8' );
print ( 'Validation set' , validation );
// Get a list of possible class values to use for error matrix axis labels.
var order = sample . aggregate_array ( 'landcover' ). distinct (). sort ();
print ( 'Error matrix axis labels' , order );
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation . errorMatrix ({
actual : landcover . bandNames (). get ( 0 ),
predicted : 'predicted_landcover' ,
order : order
});
print ( 'Error matrix' , errorMatrix );
// Compute accuracy metrics from the error matrix.
print ( "Overall accuracy" , errorMatrix . accuracy ());
print ( "Consumer's accuracy" , errorMatrix . consumersAccuracy ());
print ( "Producer's accuracy" , errorMatrix . producersAccuracy ());
print ( "Kappa" , errorMatrix . kappa ());
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap cho quá trình phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ) . select (
'SR_B[1-7]' )
landcover = ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ) . select ( 'landcover' )
sample_source = spectral . addBands ( landcover )
# Sample the combined images to generate a FeatureCollection.
sample = sample_source . sample ( ** {
# sample only from within Landsat image extent
'region' : spectral . geometry (),
'scale' : 30 ,
'numPixels' : 2000 ,
'geometries' : True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample . randomColumn ( ** { 'distribution' : 'uniform' })
display ( 'Sample for classifier development:' , sample )
# Split out ~80% of the sample for training the classifier.
training = sample . filter ( 'random < 0.8' )
display ( 'Training set:' , training )
# Train a random forest classifier.
classifier = ee . Classifier . smileRandomForest ( 10 ) . train ( ** {
'features' : training ,
'classProperty' : landcover . bandNames () . get ( 0 ),
'inputProperties' : spectral . bandNames ()
})
# Classify the sample.
predictions = sample . classify (
** { 'classifier' : classifier , 'outputName' : 'predicted_landcover' })
display ( 'Predictions:' , predictions )
# Split out the validation feature set.
validation = predictions . filter ( 'random >= 0.8' )
display ( 'Validation set:' , validation )
# Get a list of possible class values to use for error matrix axis labels.
order = sample . aggregate_array ( 'landcover' ) . distinct () . sort ()
display ( 'Error matrix axis labels:' , order )
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation . errorMatrix ( ** {
'actual' : landcover . bandNames () . get ( 0 ),
'predicted' : 'predicted_landcover' ,
'order' : order
})
display ( 'Error matrix:' , error_matrix )
# Compute accuracy metrics from the error matrix.
display ( 'Overall accuracy:' , error_matrix . accuracy ())
display ( 'Consumer \' s accuracy:' , error_matrix . consumersAccuracy ())
display ( 'Producer \' s accuracy:' , error_matrix . producersAccuracy ())
display ( 'Kappa:' , error_matrix . kappa ())
Gửi ý kiến phản hồi
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0 . Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers . Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-10-30 UTC.
Bạn muốn chia sẻ thêm với chúng tôi?
[[["Dễ hiểu","easyToUnderstand","thumb-up"],["Giúp tôi giải quyết được vấn đề","solvedMyProblem","thumb-up"],["Khác","otherUp","thumb-up"]],[["Thiếu thông tin tôi cần","missingTheInformationINeed","thumb-down"],["Quá phức tạp/quá nhiều bước","tooComplicatedTooManySteps","thumb-down"],["Đã lỗi thời","outOfDate","thumb-down"],["Vấn đề về bản dịch","translationIssue","thumb-down"],["Vấn đề về mẫu/mã","samplesCodeIssue","thumb-down"],["Khác","otherDown","thumb-down"]],["Cập nhật lần gần đây nhất: 2025-10-30 UTC."],[],[]]