Ogłoszenie: wszystkie projekty niekomercyjne zarejestrowane do korzystania z Earth Engine przed
15 kwietnia 2025 r. muszą
potwierdzić spełnianie warunków użycia niekomercyjnego , aby zachować dostęp. Jeśli nie przejdziesz weryfikacji do 26 września 2025 r., Twój dostęp może zostać wstrzymany.
Prześlij opinię
ee.FeatureCollection.classify
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Klasyfikuje każdy element w kolekcji.
Wykorzystanie Zwroty FeatureCollection. classify (classifier, outputName )
FeatureCollection
Argument Typ Szczegóły to: features
FeatureCollection Zbiór cech do sklasyfikowania. Każda cecha musi zawierać wszystkie właściwości w schemacie klasyfikatora. classifier
Klasyfikator Klasyfikator, którego chcesz użyć. outputName
Ciąg znaków, domyślnie: „classification” Nazwa właściwości wyjściowej, która ma zostać dodana. Ten argument jest ignorowany, jeśli klasyfikator ma więcej niż 1 dane wyjściowe.
Przykłady
Edytor kodu (JavaScript)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ). select ( 'SR_B[1-7]' );
var landcover =
ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ). select ( 'landcover' );
var sampleSource = spectral . addBands ( landcover );
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource . sample ({
region : spectral . geometry (), // sample only from within Landsat image extent
scale : 30 ,
numPixels : 2000 ,
geometries : true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
. randomColumn ({ distribution : 'uniform' });
print ( 'Sample for classifier development' , sample );
// Split out ~80% of the sample for training the classifier.
var training = sample . filter ( 'random < 0.8' );
print ( 'Training set' , training );
// Train a random forest classifier.
var classifier = ee . Classifier . smileRandomForest ( 10 ). train ({
features : training ,
classProperty : landcover . bandNames (). get ( 0 ),
inputProperties : spectral . bandNames ()
});
// Classify the sample.
var predictions = sample . classify (
{ classifier : classifier , outputName : 'predicted_landcover' });
print ( 'Predictions' , predictions );
// Split out the validation feature set.
var validation = predictions . filter ( 'random >= 0.8' );
print ( 'Validation set' , validation );
// Get a list of possible class values to use for error matrix axis labels.
var order = sample . aggregate_array ( 'landcover' ). distinct (). sort ();
print ( 'Error matrix axis labels' , order );
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation . errorMatrix ({
actual : landcover . bandNames (). get ( 0 ),
predicted : 'predicted_landcover' ,
order : order
});
print ( 'Error matrix' , errorMatrix );
// Compute accuracy metrics from the error matrix.
print ( "Overall accuracy" , errorMatrix . accuracy ());
print ( "Consumer's accuracy" , errorMatrix . consumersAccuracy ());
print ( "Producer's accuracy" , errorMatrix . producersAccuracy ());
print ( "Kappa" , errorMatrix . kappa ());
Konfiguracja Pythona
Informacje o interfejsie Python API i używaniu geemap
do interaktywnego programowania znajdziesz na stronie
Środowisko Python .
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee . Image ( 'LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820' ) . select (
'SR_B[1-7]' )
landcover = ee . Image ( 'USGS/NLCD_RELEASES/2016_REL/2016' ) . select ( 'landcover' )
sample_source = spectral . addBands ( landcover )
# Sample the combined images to generate a FeatureCollection.
sample = sample_source . sample ( ** {
# sample only from within Landsat image extent
'region' : spectral . geometry (),
'scale' : 30 ,
'numPixels' : 2000 ,
'geometries' : True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample . randomColumn ( ** { 'distribution' : 'uniform' })
print ( 'Sample for classifier development:' , sample . getInfo ())
# Split out ~80% of the sample for training the classifier.
training = sample . filter ( 'random < 0.8' )
print ( 'Training set:' , training . getInfo ())
# Train a random forest classifier.
classifier = ee . Classifier . smileRandomForest ( 10 ) . train ( ** {
'features' : training ,
'classProperty' : landcover . bandNames () . get ( 0 ),
'inputProperties' : spectral . bandNames ()
})
# Classify the sample.
predictions = sample . classify (
** { 'classifier' : classifier , 'outputName' : 'predicted_landcover' })
print ( 'Predictions:' , predictions . getInfo ())
# Split out the validation feature set.
validation = predictions . filter ( 'random >= 0.8' )
print ( 'Validation set:' , validation . getInfo ())
# Get a list of possible class values to use for error matrix axis labels.
order = sample . aggregate_array ( 'landcover' ) . distinct () . sort ()
print ( 'Error matrix axis labels:' , order . getInfo ())
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation . errorMatrix ( ** {
'actual' : landcover . bandNames () . get ( 0 ),
'predicted' : 'predicted_landcover' ,
'order' : order
})
print ( 'Error matrix:' )
pprint ( error_matrix . getInfo ())
# Compute accuracy metrics from the error matrix.
print ( 'Overall accuracy:' , error_matrix . accuracy () . getInfo ())
print ( 'Consumer \' s accuracy:' )
pprint ( error_matrix . consumersAccuracy () . getInfo ())
print ( 'Producer \' s accuracy:' )
pprint ( error_matrix . producersAccuracy () . getInfo ())
print ( 'Kappa:' , error_matrix . kappa () . getInfo ())
Prześlij opinię
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0 , a fragmenty kodu są dostępne na licencji Apache 2.0 . Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers . Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
Chcesz przekazać coś jeszcze?
[[["Łatwo zrozumieć","easyToUnderstand","thumb-up"],["Rozwiązało to mój problem","solvedMyProblem","thumb-up"],["Inne","otherUp","thumb-up"]],[["Brak potrzebnych mi informacji","missingTheInformationINeed","thumb-down"],["Zbyt skomplikowane / zbyt wiele czynności do wykonania","tooComplicatedTooManySteps","thumb-down"],["Nieaktualne treści","outOfDate","thumb-down"],["Problem z tłumaczeniem","translationIssue","thumb-down"],["Problem z przykładami/kodem","samplesCodeIssue","thumb-down"],["Inne","otherDown","thumb-down"]],["Ostatnia aktualizacja: 2025-07-26 UTC."],[],[]]