ประกาศ : โปรเจ็กต์ที่ไม่ใช่เชิงพาณิชย์ทั้งหมดที่ลงทะเบียนเพื่อใช้ Earth Engine ก่อนวันที่
15 เมษายน 2025 ต้อง
ยืนยันการมีสิทธิ์ที่ไม่ใช่เชิงพาณิชย์ เพื่อรักษาสิทธิ์เข้าถึง หากคุณไม่ยืนยันภายในวันที่ 26 กันยายน 2025 ระบบอาจระงับสิทธิ์เข้าถึงของคุณ
ส่งความคิดเห็น
ee.ConfusionMatrix.kappa
จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน
บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ
คำนวณสถิติ Kappa สำหรับเมทริกซ์ความสับสน
การใช้งาน การคืนสินค้า ConfusionMatrix. kappa ()
ทศนิยม
อาร์กิวเมนต์ ประเภท รายละเอียด ดังนี้ confusionMatrix
ConfusionMatrix
ตัวอย่าง
โปรแกรมแก้ไขโค้ด (JavaScript)
// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee . Array ([[ 32 , 0 , 0 , 0 , 1 , 0 ],
[ 0 , 5 , 0 , 0 , 1 , 0 ],
[ 0 , 0 , 1 , 3 , 0 , 0 ],
[ 0 , 1 , 4 , 26 , 8 , 0 ],
[ 0 , 0 , 0 , 7 , 15 , 0 ],
[ 0 , 0 , 0 , 1 , 0 , 5 ]]);
var confusionMatrix = ee . ConfusionMatrix ( array );
print ( "Constructed confusion matrix" , confusionMatrix );
// Calculate overall accuracy.
print ( "Overall accuracy" , confusionMatrix . accuracy ());
// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print ( "Consumer's accuracy" , confusionMatrix . consumersAccuracy ());
// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print ( "Producer's accuracy" , confusionMatrix . producersAccuracy ());
// Calculate kappa statistic.
print ( 'Kappa statistic' , confusionMatrix . kappa ());
การตั้งค่า Python
ดูข้อมูลเกี่ยวกับ Python API และการใช้ geemap
เพื่อการพัฒนาแบบอินเทอร์แอกทีฟได้ที่หน้า
สภาพแวดล้อม Python
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee . Array ([[ 32 , 0 , 0 , 0 , 1 , 0 ],
[ 0 , 5 , 0 , 0 , 1 , 0 ],
[ 0 , 0 , 1 , 3 , 0 , 0 ],
[ 0 , 1 , 4 , 26 , 8 , 0 ],
[ 0 , 0 , 0 , 7 , 15 , 0 ],
[ 0 , 0 , 0 , 1 , 0 , 5 ]])
confusion_matrix = ee . ConfusionMatrix ( array )
print ( "Constructed confusion matrix:" )
pprint ( confusion_matrix . getInfo ())
# Calculate overall accuracy.
print ( "Overall accuracy:" , confusion_matrix . accuracy () . getInfo ())
# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
print ( "Consumer's accuracy:" )
pprint ( confusion_matrix . consumersAccuracy () . getInfo ())
# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
print ( "Producer's accuracy:" )
pprint ( confusion_matrix . producersAccuracy () . getInfo ())
# Calculate kappa statistic.
print ( "Kappa statistic:" , confusion_matrix . kappa () . getInfo ())
ส่งความคิดเห็น
เนื้อหาของหน้าเว็บนี้ได้รับอนุญาตภายใต้ใบอนุญาตที่ต้องระบุที่มาของครีเอทีฟคอมมอนส์ 4.0 และตัวอย่างโค้ดได้รับอนุญาตภายใต้ใบอนุญาต Apache 2.0 เว้นแต่จะระบุไว้เป็นอย่างอื่น โปรดดูรายละเอียดที่นโยบายเว็บไซต์ Google Developers Java เป็นเครื่องหมายการค้าจดทะเบียนของ Oracle และ/หรือบริษัทในเครือ
อัปเดตล่าสุด 2025-07-26 UTC
หากต้องการบอกให้เราทราบเพิ่มเติม
[[["เข้าใจง่าย","easyToUnderstand","thumb-up"],["แก้ปัญหาของฉันได้","solvedMyProblem","thumb-up"],["อื่นๆ","otherUp","thumb-up"]],[["ไม่มีข้อมูลที่ฉันต้องการ","missingTheInformationINeed","thumb-down"],["ซับซ้อนเกินไป/มีหลายขั้นตอนมากเกินไป","tooComplicatedTooManySteps","thumb-down"],["ล้าสมัย","outOfDate","thumb-down"],["ปัญหาเกี่ยวกับการแปล","translationIssue","thumb-down"],["ตัวอย่าง/ปัญหาเกี่ยวกับโค้ด","samplesCodeIssue","thumb-down"],["อื่นๆ","otherDown","thumb-down"]],["อัปเดตล่าสุด 2025-07-26 UTC"],[],["The `ConfusionMatrix.kappa()` method computes the Kappa statistic, returning a float value. This method operates on a confusion matrix, which is typically generated from a classifier. The provided examples demonstrate constructing a confusion matrix from an array, then utilizing `kappa()` to calculate the Kappa statistic. They also showcase related accuracy metrics like overall, consumer's, and producer's accuracy.\n"]]