אנחנו משיקים ב-Earth Engine
רמות מכסה לשימוש לא מסחרי כדי להגן על משאבי מחשוב משותפים ולהבטיח ביצועים אמינים לכולם. כל הפרויקטים הלא מסחריים יצטרכו לבחור רמת מכסת שימוש עד
27 באפריל 2026 , אחרת הם ישתמשו ברמת הקהילה כברירת מחדל. המיכסות לפי רמה ייכנסו לתוקף בכל הפרויקטים (ללא קשר לתאריך הבחירה של הרמה) ב-
27 באפריל 2026 .
מידע נוסף
שליחת משוב
ee.ConfusionMatrix.consumersAccuracy
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
חישוב הדיוק (המהימנות) של הצרכן במטריצת בלבול, שמוגדרת כ- (correct / total) לכל שורה.
שימוש החזרות ConfusionMatrix. consumersAccuracy ()מערך
ארגומנט סוג פרטים זה: confusionMatrix ConfusionMatrix
דוגמאות
עורך הקוד (JavaScript)
// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee . Array ([[ 32 , 0 , 0 , 0 , 1 , 0 ],
[ 0 , 5 , 0 , 0 , 1 , 0 ],
[ 0 , 0 , 1 , 3 , 0 , 0 ],
[ 0 , 1 , 4 , 26 , 8 , 0 ],
[ 0 , 0 , 0 , 7 , 15 , 0 ],
[ 0 , 0 , 0 , 1 , 0 , 5 ]]);
var confusionMatrix = ee . ConfusionMatrix ( array );
print ( "Constructed confusion matrix" , confusionMatrix );
// Calculate overall accuracy.
print ( "Overall accuracy" , confusionMatrix . accuracy ());
// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print ( "Consumer's accuracy" , confusionMatrix . consumersAccuracy ());
// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print ( "Producer's accuracy" , confusionMatrix . producersAccuracy ());
// Calculate kappa statistic.
print ( 'Kappa statistic' , confusionMatrix . kappa ());
הגדרת Python
מידע על Python API ועל שימוש ב-geemap לפיתוח אינטראקטיבי מופיע בדף
Python Environment .
import ee
import geemap.core as geemap
Colab (Python)
# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee . Array ([[ 32 , 0 , 0 , 0 , 1 , 0 ],
[ 0 , 5 , 0 , 0 , 1 , 0 ],
[ 0 , 0 , 1 , 3 , 0 , 0 ],
[ 0 , 1 , 4 , 26 , 8 , 0 ],
[ 0 , 0 , 0 , 7 , 15 , 0 ],
[ 0 , 0 , 0 , 1 , 0 , 5 ]])
confusion_matrix = ee . ConfusionMatrix ( array )
display ( "Constructed confusion matrix:" , confusion_matrix )
# Calculate overall accuracy.
display ( "Overall accuracy:" , confusion_matrix . accuracy ())
# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
display ( "Consumer's accuracy:" , confusion_matrix . consumersAccuracy ())
# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
display ( "Producer's accuracy:" , confusion_matrix . producersAccuracy ())
# Calculate kappa statistic.
display ( "Kappa statistic:" , confusion_matrix . kappa ())
שליחת משוב
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0 . לפרטים, ניתן לעיין במדיניות האתר Google Developers . Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-10-30 (שעון UTC).
רוצה לתת לנו משוב?
[[["התוכן קל להבנה","easyToUnderstand","thumb-up"],["התוכן עזר לי לפתור בעיה","solvedMyProblem","thumb-up"],["סיבה אחרת","otherUp","thumb-up"]],[["חסרים לי מידע או פרטים","missingTheInformationINeed","thumb-down"],["התוכן מורכב מדי או עם יותר מדי שלבים","tooComplicatedTooManySteps","thumb-down"],["התוכן לא עדכני","outOfDate","thumb-down"],["בעיה בתרגום","translationIssue","thumb-down"],["בעיה בדוגמאות/בקוד","samplesCodeIssue","thumb-down"],["סיבה אחרת","otherDown","thumb-down"]],["עדכון אחרון: 2025-10-30 (שעון UTC)."],[],[]]